
COSC 735: Software Engineering Test 1 Sample Solution

QUESTION 1:
1. (a) Define Software Engineering. [2 marks]

Software engineering is the establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines.

(b) List and explain the characteristics of software that makes it different from hardware.

[6 marks]
i. Software doesn't wear-out.
The hardware failure rate as a function of time is depicted using the "bathtub curve" in diagram A
below. This indicates that hardware exhibit relatively high failure rates early in its life (these failure are
often attributable to design or manufacturing defects). Defects are then corrected, and failure rate drops
to a steady-state level for some period of time. As time passes, however, the failure rate rises again as
hardware components suffer from cumulative effect of dust, vibration, abuse, temperature extremes,
and many other environmental maladies.
Stated simple, the hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to wear out. In theory,
therefore, the failure curve for software should take the form of the "idealized curve" as shown in the
diagram B below. Undiscovered defects will cause high failure rates early in the life cycle of a program,
however, these are corrected and the curve flattens. The idealized curve is a gross over-simplification
of actual failure models for software. However, the simplification is clear-software doesn't wear out.
But it does deteriorate.

ii. Software is developed or engineered; it is not manufactured in the classical sense.
Although some similarities exist between software development and hardware manufacturing the two
activities are fundamentally different. In both activities, high quality is achieved through good design,
but the manufacturing phase for hardware can introduce quality problems that are non-existent (or
easily corrected) for software. Both activities are dependent on people, but the relationship between
people applied and work accomplished is entirely different.

iii. Although the industry is moving towards component-based construction, most software
continues to be custom built.
In hardware world, component resuse is a natural part of the engineering process. In the software world,
it has only begun to be achieved in a broad scale. A software component should be designed and
implemented so that it can be reused in many different programs.

(c) Why do requirements change so much? After all, don’t people know what they want?

[2 marks]
The following are reasons why requirement changes:

i. Missed a requirement. A stakeholder might realize some missing feature of the system
ii. A change can be needed because of a detected defect.
iii. Some mismatch in stakeholder's expectations from what they see in prototypes or working

system (when they see it).
iv. The political issues within the organization and between various stakeholders.
v. The marketplace changes.
vi. Law changes. This might change some legal aspects of the system based on what was being

made. For example, if a taxation system is needed, Tax policies might change and system
might needs to be changed as per the latest laws.

QUESTION 2:
(a) Software engineering is referred to as a layered technology. Explain all the layers with the aid of a
diagram. [2 marks]

[2 marks]

[4 marks]

Software engineering is the establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines.
 Any engineering approach must rest on an organisational commitment to quality. The bedrock

that supports software engineering is quality focus.
 The foundation for software engineering is the "process layer". Software engineering process is

the glue that holds the technology layers together and enable rational and timely development of
computer software. It defines a framework that must be established for effective delivery of
software engineering technology.

 Software engineering "methods" provides the technical "how to's" for building software.
Methods encompass a broad array of tasks that include communication, requirement analysis,
design modelling, program construction, testing and support.

 Software engineering "tools" provides automated or semi-automated support for the process and
the methods.

(b) Extreme Programming (XP) is the most widely used agile process. Explain the key activities/
distinguishing features of XP model in Agile. [4 marks]
 XP Planning. The planning activity (also called the planning game) begins with listening – a requirements

gathering activity that enables the technical members of the XP team to understand the business
context for the software and to get a broad feel for required output and major features and
functionality.

 XP Design. XP design rigorously follows the KIS (keep it simple) principle. A simple design is
always preferred over a more complex representation. In addition, the design provides
implementation guidance for a story as it is written—nothing less, nothing more. The design of extra
functionality (because the developer assumes it will be required later) is discouraged. XP design uses
virtually no notation and produces few, if any, work products other than CRC cards and spike
solutions, design is viewed as a transient artefact that can and should be continually modified as
construction proceeds.

 XP Coding. XP Coding Recommends the construction of a unit test for a store before coding

commences. Another key concept during the coding activity (and one of the most talked about
aspects of XP) is pair programming. XP recommends that two people work together at one computer
workstation to create code for a story. This provides a mechanism for real-time problem solving (two
heads are often better than one) and real-time quality assurance (the code is reviewed as it is created).

 XP Testing. Unit tests are executed daily. The unit tests that are created should be implemented
using a framework that enables them to be automated (hence, they can be executed easily and
repeatedly). This encourages a regression testing strategy whenever code is modified (which is often,
given the XP refactoring philosophy). “Acceptance tests” are defined by the customer and executed
to assess customer visible functionality

QUESTION 3:
The following is a narrative description of the business process of organization of conferences with regards
to the submitting, reviewing and accepting papers.

The author completes an online form that requests the user to input author name, correspondence address, email
and, title of paper. The system validates this data and, if correct, asks the author to submit the paper. The author
then browses to find the correct paper on their system and submits it. Once received and stored, the system returns
to the author a reference number for the paper. Authors may submit as many papers as they like to be considered
for acceptance to the conference up until the deadline date for submissions. Papers are allocated to referees for
assessment. They review each paper and submit to the system their decision. Once the programme organiser has
agreed the decisions authors are informed by email. Accepted papers are then schedule to be delivered at a
conference. This involves allocating a date, time and place for the presentation of the paper.

(a) Analyse the above text and then draw a use case diagram for the system. [6 marks]

Note: The use case diagram may slightly varies but, system actors, use cases must be clearly outlined.

(b) What does Level 0 DFD represent? Using the narrative description above, draw a level 0 DFD for
the system. [4 marks]
Level 0 DFD: This is the first data flow model (sometimes called a context diagram) represents the
system as a whole by providing a high level summary of the system input, process and output. Subsequent
data flow diagrams refine the context diagram, providing increasing detail with each subsequent level.

[1 marks]
Level 0 DFD for the system: [3 marks]

Set program

Review paper

Submit paper

Reviewer
Conference
Schedule

Manager

Conference Paper
Submission/

Processing System

Author

QUESTION 4:

(a) What is Prescriptive Models? [2 marks]
Prescriptive process models advocate an orderly approach to software engineering. It stress detailed
definition, identification, and application of process activities and tasks. Their intent is to improve system
quality, make projects more manageable, make delivery dates and costs more predictable, and guide teams
of software engineers as they perform the work required to build a system.

(b) Requirements engineering provides the appropriate mechanism for understanding what the
customer wants. Explain any four (4) distinct tasks during requirement engineering. [8 marks]

i. Inception

At project inception, you establish a basic understanding of the problem, the people
who want a solution, the nature of the solution that is desired, and the effectiveness
of preliminary communication and collaboration between the other stakeholders
and the software team.

ii. Elicitation

Elicit requirements from all stakeholders – ask the customer, the users, and others
what the objectives for the system or product are, what is to be accomplished, how
the system or product fits into the needs of the business, and finally, how the system
or product is to be used on a day-to-day basis.

iii. Elaboration

The information obtained from the customer during inception and elicitation is
expanded and refined during elaboration. This task focuses on developing a refined
requirements model that identifies various aspects of software function, behavior,
and information.

iv. Negotiation

Agree on a deliverable system that is realistic for developers and customers. You
have to reconcile these conflicts through a process of negotiation.

v. Specification

A specification can be a written document, a set of graphical models, a formal
mathematical model, collection of usage scenarios, a prototype, or any combination
of these.

vi. Validation The work products produced as a consequence of requirements engineering are
assessed for quality during a validation step. Validation is a review mechanism that
looks for errors in content, missing information, inconsistencies etc.

vii. Requirements
management

Requirements of systems change, and the desire to change requirements persists
throughout the life of the system. Requirements management is a set of activities
that help the project team identify, control, and track requirements and changes to
requirements at any time as the project proceeds.

