Chapter 11

Introduction to Multiprocessors

Fundamentals of Computer Organization and Architecture

Mostafa Abd-El-Barr & Hesham El-Rewini

- A multiple processor system consists of two or more processors that are connected in a manner that allows them to share the simultaneous (parallel) execution of a given computational task.
- Two basic requirements are inevitable for the efficient use of the employed processors. These requirements are:
 - Low communication overhead among processors while executing a given task and
 - A degree of inherent parallelism in the task.

• Typical sizes of some multiprocessor systems:

Category	Sub-categories	Number of processors
Communication Model	Multiple Processors	2-256
	Multiple Computers	8-256
Physical Connection	Bus-based	2-32
	Network-based	8-256

• The organization and performance of a multiple processor system are greatly influenced by the interconnection network used to connect them.

Multi-stage Interconnection Network

– Crossbar system

• Flynn's Classification:

• Flynn's Classification:

Fundamentals of Computer Organization and Architecture

Mostafa Abd-El-Barr & Hesham El-Rewini

• Kuck Classification Scheme:

			EXECUTION STREAMS			
			SINGLE		MULTIPLE	
			SCALAR	ARRAY	SCALAR	ARRAY
I N S T R U C	S I N G	S C A L A R	Uniprocessor	Uniprocessor ILLIAC-IV	SIMD	
T I O N	L E	R R A Y				
	M U L T I	S C L A R			NYU Ultracomputer	Cray X MP
S T E A M	P L E	A R R A Y				

- Hwang & Briggs Classification Scheme:
 - The main new contribution of the classification due to Hwang & Briggs is the introduction of the concept of *classes*.
 - This is a further refinement on Flynn's classification.
 - The SISD category is further refined into two sub-categories, i.e. single functional unit SISD (SISD-S) and multiple functional units SISD (SISD-M).
 - The MIMD category is further refined into loosely-coupled MIMD (MIMD-L) and tightly-coupled MIMD (MIMD-T).
 - The SIMD category is further refined into word-sliced processing (SIMD-W) and bit-sliced processing (SIMD-B).

• Erlangen Classification Scheme

- Skillicorn Classification Scheme
 - According to this classification, an abstract von Neumann machine is modeled:

- Skillicorn Classification Scheme
 - Possible connection schemes:

Connection type	Meaning
1-1	A connection between two single units
1-n	A connection between a single unit and n other units
n-n	n (1-1) connections
n×n	n (1-n) connections

- Sample connection classes:

Class	₽	DP	IP-DP	\mathbb{P} - \mathbb{M}	DP-DM	DP-DP	Description	Flynn
1	1	1	1-1	1-1	1-1	None	Von Neumann	SISD
							uniprocessor	
2	1	N	1-n	1-1	n-n	n×n	Type 1 Array Processors	SIMD
3	1	Ν	1-n	1-1	n×n	None	Type 2 Array Processors	SIMD
4	Ν	Ν	n-n	n-n	n-n	n×n	Loosely-coupled von	MIMD
							Neumann	
5	Ν	N	n-n	n-n	n×n	None	Tightly-coupled von	MIMD
							Neumann	

11.3 SIMD Schemes

• First Possible Scheme:

11.3 SIMD Schemes

• Second Possible Scheme:

- Shared Memory Organization
 - Shared memory architecture with a uniform memory access (UMA)

- Shared Memory Organization
 - Cache-only memory Architecture (COMA)

- Shared Memory Organization
 - Distributed shared memory architecture with non-uniform memory access (NUMA).

- Message-Passing Organization
 - Message passing represents an alternative method for communication and movement of data among multiprocessors.
 - Local, rather than global, memories are used to communicate messages among processors.
 - A message is defined as a block of related information that travels among processors over direct links.
 - Examples of message passing systems include the cosmic cube, workstation cluster, and the transputer.

Message-Passing Organization

Fundamentals of Computer Organization and Architecture

Mostafa Abd-El-Barr & Hesham El-Rewini

11.5 Interconnection Networks

- Mode of Operation
 - Synchronous:
 - A single global clock is used by all components in the system (lock-step manner)
 - Asynchronous:
 - No global clock required
 - Hand shaking signals are used to coordinate the operation of asynchronous systems.
- Control Strategy
 - Centralized: one central control unit is used to control the operations of the components of the system.
 - Decentralized: the control function is distributed among different components in the system.

11.5 Interconnection Networks

- Switching Techniques
 - Circuit switching: a complete path has to be established prior to the start of communication between a source and a destination.
 - Packet switching: communication between a source and a destination takes place via messages divided into smaller entities, called packets.
- Topology
 - Describes how to connect processors and memories to other processors and memories.
 - Static: direct fixed links are established among nodes to form a fixed network.
 - Dynamic: connections are established when needed.

11.6 Analysis and Performance Metrics

- In executing tasks (programs) using a multiprocessor, it may be assumed that a given task can be divided into *n* equal subtasks each can be executed by one processor.
- Therefore, the expected speedup will be given by the efficiency E(n)=100%.

S(n) = Speed - up factor

= increase in speed due to the use of a multiprocessor system consisting of n processors = Execution time using a single processor

Execution time using *n* processors

E(n) = Efficiency $= \frac{S(n)}{n} \times 100\%$

Fundamentals of Computer Organization and Architecture

Mostafa Abd-El-Barr & Hesham El-Rewini

11.7 Summary

- In this chapter, we have navigated through a number of concepts and system configurations related to the issues of multiprocessing.
- In particular, we have provided the general concepts and terminology used in the context of multiprocessors.
- A number of taxonomies for multiprocessors have been introduced and analyzed.
- Two memory organization schemes have been introduced:
 - Shared-memory
 - Message passing
- In addition, we have introduced the different topologies used for interconnecting multiple processors.