
Chapter 10

Reduced Instruction Set
Computers (RISCs)

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.1 RISC/CISC Evolution Cycle

• The term RISCs stands for Reduced Instruction Set
Computers.

• It was originally introduced as a notion to mean
architectures that can execute as fast as one instruction
per clock cycle.

• This paradigm promotes simplicity in computer
architectures design.

• This paradigm shift relates to what is known as the
Semantic Gap, a measure of the difference between the
operations provided in the high level languages (HLLs)
and those provided in computer architectures.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.1 RISC/CISC Evolution Cycle

• It is recognized that the wider the semantic gap, the
larger the number of undesirable consequences.

• These include
– (a) execution inefficiency,
– (b) excessive machine program size, and
– (c) increased compiler complexity.

• Because of these expected consequences, the
conventional response of computer architects has been
to add layers of complexity to newer architectures.

• These include increasing the number and complexity of
instructions together with increasing the number of
addressing modes.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.1 RISC/CISC Evolution Cycle

• The architectures resulting from the adoption of this “add
more complexity” are now known as Complex Instruction
Set Computers (CISCs).

• However, it soon became apparent that a complex
instruction set has a number of disadvantages.

• These include a complex instruction decoding scheme,
an increased size of the control unit, and increased logic
delays.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.2 RISCs Design Principles

2Others

3Unconditional Branches

40Conditional Branches

15Procedure Calls

5Loops

35Assignment Statements

Estimated PercentageOperations

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.2 RISCs Design Principles

• Simple movement of data (represented by assignment
statements), rather than complex operations, are
substantial and should be optimized.

• Conditional branches are predominant and therefore
careful attention should be paid to the sequencing of
instructions. This is particularly true when it is known
that pipelining is indispensable to use.

• Procedure calls/return are the most time consuming
operations and therefore a mechanism should be
devised to make the communication of parameters
among the calling and the called procedures cause the
least number of instructions to execute.

• A prime candidate for optimization is the mechanism
for storing and accessing local scalar variables.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.2 RISCs Design Principles

• 2 principles:
– Keeping the most frequently accessed operands in CPU

registers.
– Minimizing the register-to-memory operations.

• These principles can be achieved using the following
mechanisms:

– Use a large number of registers to optimize operand
referencing and reduce the processor memory traffic.

– Optimize the design of instruction pipelines such that
minimum compiler code generation can be achieved.

– Use a simplified instruction set and leave out those complex
and unnecessary instructions.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.2 RISCs Design Principles

• The following two approaches were identified
to implement the above three mechanisms.

– Software Approach
• Use the compiler to maximize register usage by allocating

registers to those variables that are used the most in a
given time period.

– Hardware Approach
• Use ample of CPU registers so that more variables can be

held in registers for larger periods of time. The hardware
approach necessitates the use of a new register
organization, called overlapped register window.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.3 Overlapped Register Windows

• The main idea behind the use of register windows is to
minimize memory accesses.

• A procedure call will automatically switch the CPU to
use a different fixed-size window of registers.

• In order to minimize the actual movement of
parameters among the calling and the called
procedures, each set of registers is divided into three
subsets:

– Parameter Registers,
– Local Registers, and
– Temporary Registers.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.3 Overlapped Register Windows

• When a procedure call is made, a new overlapping
window will be created such that the Temporary
Registers of the caller are physically the same as the
Parameter Registers of the called procedure.

• This overlap allows parameters to be passed among
procedure without actual movement of data.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.4 RISCs Versus CISCs

• RISC versus CISC Performance:

• RISC versus CISC Characteristics:

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.4 RISCs Versus CISCs

• The following set of common characteristics among
RISC machines is observed:

– Fixed-length instructions.
– Limited number of instructions (128 or less).
– Limited set of simple addressing modes (minimum of two:

Indexed and PC-relative).
– All operations are performed on registers; no memory

operations.
– Only two memory operations: Load and Store.
– Pipelined instruction execution.
– Large number of general purpose registers or the use of

advanced compiler technology to optimize register usage
– One instruction per clock cycle.
– Hardwired Control unit design rather than microprogramming.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.5 Pioneer (University) RISC Machines

• The Berkeley RISC
– Three operand instructions formats used in RISC:

– Procedure call instruction in RISC:

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.5 Pioneer (University) RISC Machines

• The Berkeley RISC
– RISC 4-bus Organization:

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.5 Pioneer (University) RISC Machines

• Stanford MIPS (Microprocessor without Interlock Pipe
Stages)

– Three-operand instructions used in MIPS:

– Jump instruction format used in MIPS:

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.5 Pioneer (University) RISC Machines

• Stanford MIPS (Microprocessor without Interlock Pipe
Stages)

– MIPS Organization:

M
D

R

M
A

R

PC
-3

PC
-2

PC
-1

PC

R
eg

is
te

r F
ile

 (1
6×

32
)

B
ar

re
l S

hi
fte

r

Hi
and
Lo
Reg
ister
s

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.6 Example of Advanced RISC Machines

• Compaq (formerly DEC) Alpha 21264
– Memory Hierarchy:

– The Alpha 21264 Pipeline:

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.6 Example of Advanced RISC Machines
• SUN UltraSPARC III

– UltraSPARC III memory hierarchy:

– A four-way UltraSPARC III Multiprocessor configuration:

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.7 Summary
• A RISC architecture saves the extra chip area used by CISC

architectures for decoding and executing complex instructions.
• The saved chip area is then used to provide on-chip instruction

cache that can be used to reduce instruction traffic between the
processor and the memory.

• Common characteristics shared by most RISC designs are:
– Limited and simple instruction set, Large number of general purpose

registers and/or the use of compiler technology to optimize register
usage, and optimization of the instruction pipeline.

• An essential RISC philosophy is to keep the most frequently
accessed operands in registers and minimize register-memory
operations.

• This can be achieved using one of two approaches:
– Software Approach
– Hardware Approach

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

10.7 Summary
• It is worthwhile mentioning that the classification of processors as

entirely pure RISC or entirely pure CISC is becoming more and
more inappropriate and may be irrelevant.

• What actually counts is how much performance gain can be
achieved by including an element of a given design style.

• Most of modern processors use a calculated combination of
elements of both design styles.

• The decisive factor in which element(s) of each design style to
include is made based on a tradeoff between the required
improvement in performance and the expected added cost.

• A number of processors are classified as RISC while employing a
number of CISC features, such as integer/floating-point division
instructions.

• Similarly, there exist processors that are classified as CISC while
employing a number of RISC features, such as pipelining.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

