
Chapter 9

Pipelining Design Techniques
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9.1 General Concepts
• Pipelining refers to the technique in which a given task is 

divided into a number of subtasks that need to be 
performed in sequence. 

• Each subtask is performed by a given functional unit. 
• The units are connected in a serial fashion and all of 

them operate simultaneously. 
• The use of Pipelining improves the performance as 

compared to the traditional sequential execution of tasks.
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9.1 General Concepts
• Below is an illustration of the basic difference between 

executing four subtasks of a given instruction (in this 
case fetching F, decoding D, execution E, and writing the 
results W) using pipelining and sequential processing. 
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9.1 General Concepts
• In order to formulate some performance measures for 

the goodness of a pipeline in processing a series of 
tasks, a space time chart (called the Gantt's Chart) is 
used. 

• The chart shows the succession of the sub-tasks in the 
pipe with respect to time. 
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9.1 General Concepts
• Three performance measures for the goodness of a 

pipeline are provided:
– Speed-up S(n), 
– Throughput U(n), and 
– Efficiency E(n). 

• It is assumed that the unit time T = t units.
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9.1 General Concepts
• Speedup S(n):

– Consider the execution of m tasks (instructions) using n-stages 
(units) pipeline.

– n+m-1 time units are required to complete m tasks.

• Throughput T(n):
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9.1 General Concepts
• Efficiency E(n):
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9.2 Instruction Pipeline
• A pipeline stall: A Pipeline operation is said to have been 

stalled if one unit (stage) requires more time to perform 
its function, thus forcing other stages to become idle.

• Due to the extra time units needed for instruction  to be 
fetched, the pipeline stalls.

• Such situations create what is known as pipeline bubble
(or pipeline hazards).  
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9.2 Instruction Pipeline
• Pipeline “Stall” due to Instruction Dependency:

– Instruction dependency refers to the case whereby 
fetching of an instruction depends on the results of 
executing a previous instruction. 

– Instruction dependency manifests itself in the 
execution of a conditional branch instruction.

– For example, in the case of a "branch if negative" 
instruction, the next instruction to fetch will not be 
known until the result of executing that “branch if 
negative” instruction is known. 
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9.2 Instruction Pipeline
• Pipeline “Stall” due to Instruction Dependency:
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9.2 Instruction Pipeline
• Pipeline “Stall” due to Data Dependency:

– Data dependency in a pipeline occurs when a 
source operand of instruction    depends on the 
results of executing a preceding instruction,     , i > j.

– Write-after-write data dependency

   iI
 jI
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9.2 Instruction Pipeline
• Pipeline “Stall” due to Data Dependency:

– Read-after-write data dependency
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9.2 Instruction Pipeline
• Method used to prevent fetching the wrong instruction 

or operand: use of NOP (No Operation) 
– In real-life situations, a mechanism is needed to 

guarantee fetching the appropriate instruction at the 
appropriate time. 

– Insertion of “NOP” instructions will help carrying out 
this task. 

– A "NOP" is an instruction that has no effect on the 
status of the processor.
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9.2 Instruction Pipeline
• Method used to prevent fetching the wrong instruction 

or operand: use of NOP (No Operation) 
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9.2 Instruction Pipeline
• Methods used to reduce pipeline stall due to 

instruction dependency:
– Unconditional Branch Instructions

• Reordering of Instructions.
• Use of Dedicated Hardware in the Fetch Unit.
• Pre-computing  of Branches and Reordering of Instructions. 
• Instruction Pre-fetching.

– Conditional Branch Instructions
• Delayed Branch.
• Prediction of the Next Instruction to Fetch.
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9.2 Instruction Pipeline
• Methods used to reduce pipeline stall due to data 

dependency
– Hardware Operand Forwarding
– Software Operand Forwarding

• Store-Fetch.
• Fetch-Fetch.
• Store-Store. 
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9.3 Example Pipeline Processors

• ARM 1026EJ-S Processor
– ARM 1022EJ-S is a pipeline processor whose ALU consists of 

six stages:
• Fetch Stage: for instruction cache access and branch prediction for 

instructions that have already been fetched.
• Issue Stage: for initial instruction decoding.
• Decode Stage: for final instruction decode, register read for ALU 

operations, forwarding, and initial interlock resolution.
• Execute Stage: for data access address calculation, data processing shift, 

shift & saturate, ALU operations, first stage multiplication, flag setting, 
condition code check, branch mis-predict detection, and store data 
register read.

• Memory Stage: for data cache access, second stage multiplication, and 
saturations.

• Write Stage: for register write and instruction retirement.  
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9.3 Example Pipeline Processors
• UltraSPARC-III Processor
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9.4 Instruction-Level Parallelism
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9.4 Instruction-Level Parallelism
• Superscalar Architectures

– A scalar machine is able to perform only one arithmetic operation at 
once. 

– A superscalar architecture (SPA) is able to fetch, decode, execute, and 
store results of several instructions at the same time. 

– In a SPA instruction processing consists of the fetch, decode, issue, and 
commit stages. 

– The most crucial step in processing instructions in SPAs is the 
dependency analysis. 

• The complexity of such analysis grows quadratically with the 
instruction word size. 

• This puts a limit on the degree of parallelism that can be achieved 
with SPAs such that a degree of parallelism higher than four will be 
impractical. 
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9.4 Instruction-Level Parallelism
• Very Long Instruction Word (VLIW)

– The compiler performs dependency analysis and determines the 
appropriate groupings/scheduling of operations. 

– Operations that can be performed simultaneously are grouped 
into a Very Long Instruction Word (VLIW). 

– Therefore, the instruction word is made long enough in order to 
accommodate the maximum possible degree of parallelism. 

– In VLIW, resource binding can be done by devoting each field of 
an instruction word to one and only one functional unit. 

– However, this arrangement will lead to a limit on the mix of 
instructions that can be issued per cycle. 

– A more flexible approach is to allow a given instruction field to be 
occupied by different kinds of operations. 
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9.5 Arithmetic Pipeline
• Fixed-Point Arithmetic Pipelines
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9.5 Arithmetic Pipeline
• Floating-Point Arithmetic Pipelines
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9.5 Arithmetic Pipeline
• Pipelined Multiplication using Carry-Save Addition
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9.6 Summary
• In this chapter, the basic principles involved in designing 

pipeline architectures were considered. 
• Our coverage started with a discussion on a number of 

metrics that can be used to assess the goodness of a 
pipeline. 

• We then moved to present a general discussion on the 
main problems that need to be considered in designing a 
pipelined architecture. 
– In particular we considered two main problems: Instruction and 

data dependency. 
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9.6 Summary
• The effect of these two problems on the performance of 

a pipeline has been elaborated. 
• Some possible techniques that can be used to reduce 

the effect of the instruction and data dependency have 
been introduced and illustrated. 

• An example of a recent pipeline architecture, the ARM 
11 microarchitecture, has been presented. 
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