
Chapter 9

Pipelining Design Techniques

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.1 General Concepts
• Pipelining refers to the technique in which a given task is

divided into a number of subtasks that need to be
performed in sequence.

• Each subtask is performed by a given functional unit.
• The units are connected in a serial fashion and all of

them operate simultaneously.
• The use of Pipelining improves the performance as

compared to the traditional sequential execution of tasks.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.1 General Concepts
• Below is an illustration of the basic difference between

executing four subtasks of a given instruction (in this
case fetching F, decoding D, execution E, and writing the
results W) using pipelining and sequential processing.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.1 General Concepts
• In order to formulate some performance measures for

the goodness of a pipeline in processing a series of
tasks, a space time chart (called the Gantt's Chart) is
used.

• The chart shows the succession of the sub-tasks in the
pipe with respect to time.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.1 General Concepts
• Three performance measures for the goodness of a

pipeline are provided:
– Speed-up S(n),
– Throughput U(n), and
– Efficiency E(n).

• It is assumed that the unit time T = t units.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.1 General Concepts
• Speedup S(n):

– Consider the execution of m tasks (instructions) using n-stages
(units) pipeline.

– n+m-1 time units are required to complete m tasks.

• Throughput T(n):

possibleally theoreticis speedin increase fold-n i.e.,n = S(n)
1)1(processing pipeline using Time

processing sequential using Time= S(n)

∞→

−+
×

=
×−+

××
=−

mLim
mn
nm

tmn
tnmupSpeed

1 = U(n)mLim

t1)-m+(n

m =unit timeper executed tasksof # =)(

∞→

×
nUThroughput

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.1 General Concepts
• Efficiency E(n):

1)(
1

upspeed maximum the toupspeed actual theof Ratio)(

=∞→

−+
=

−
=−−=

nEmLim
mn
m

n
upSpeednEEfficiency

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.2 Instruction Pipeline
• A pipeline stall: A Pipeline operation is said to have been

stalled if one unit (stage) requires more time to perform
its function, thus forcing other stages to become idle.

• Due to the extra time units needed for instruction to be
fetched, the pipeline stalls.

• Such situations create what is known as pipeline bubble
(or pipeline hazards).

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.2 Instruction Pipeline
• Pipeline “Stall” due to Instruction Dependency:

– Instruction dependency refers to the case whereby
fetching of an instruction depends on the results of
executing a previous instruction.

– Instruction dependency manifests itself in the
execution of a conditional branch instruction.

– For example, in the case of a "branch if negative"
instruction, the next instruction to fetch will not be
known until the result of executing that “branch if
negative” instruction is known.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.2 Instruction Pipeline
• Pipeline “Stall” due to Instruction Dependency:

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.2 Instruction Pipeline
• Pipeline “Stall” due to Data Dependency:

– Data dependency in a pipeline occurs when a
source operand of instruction depends on the
results of executing a preceding instruction, , i > j.

– Write-after-write data dependency

 iI
 jI

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.2 Instruction Pipeline
• Pipeline “Stall” due to Data Dependency:

– Read-after-write data dependency

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.2 Instruction Pipeline
• Method used to prevent fetching the wrong instruction

or operand: use of NOP (No Operation)
– In real-life situations, a mechanism is needed to

guarantee fetching the appropriate instruction at the
appropriate time.

– Insertion of “NOP” instructions will help carrying out
this task.

– A "NOP" is an instruction that has no effect on the
status of the processor.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.2 Instruction Pipeline
• Method used to prevent fetching the wrong instruction

or operand: use of NOP (No Operation)

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.2 Instruction Pipeline
• Methods used to reduce pipeline stall due to

instruction dependency:
– Unconditional Branch Instructions

• Reordering of Instructions.
• Use of Dedicated Hardware in the Fetch Unit.
• Pre-computing of Branches and Reordering of Instructions.
• Instruction Pre-fetching.

– Conditional Branch Instructions
• Delayed Branch.
• Prediction of the Next Instruction to Fetch.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.2 Instruction Pipeline
• Methods used to reduce pipeline stall due to data

dependency
– Hardware Operand Forwarding
– Software Operand Forwarding

• Store-Fetch.
• Fetch-Fetch.
• Store-Store.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.3 Example Pipeline Processors

• ARM 1026EJ-S Processor
– ARM 1022EJ-S is a pipeline processor whose ALU consists of

six stages:
• Fetch Stage: for instruction cache access and branch prediction for

instructions that have already been fetched.
• Issue Stage: for initial instruction decoding.
• Decode Stage: for final instruction decode, register read for ALU

operations, forwarding, and initial interlock resolution.
• Execute Stage: for data access address calculation, data processing shift,

shift & saturate, ALU operations, first stage multiplication, flag setting,
condition code check, branch mis-predict detection, and store data
register read.

• Memory Stage: for data cache access, second stage multiplication, and
saturations.

• Write Stage: for register write and instruction retirement.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.3 Example Pipeline Processors
• UltraSPARC-III Processor

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.4 Instruction-Level Parallelism

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.4 Instruction-Level Parallelism
• Superscalar Architectures

– A scalar machine is able to perform only one arithmetic operation at
once.

– A superscalar architecture (SPA) is able to fetch, decode, execute, and
store results of several instructions at the same time.

– In a SPA instruction processing consists of the fetch, decode, issue, and
commit stages.

– The most crucial step in processing instructions in SPAs is the
dependency analysis.

• The complexity of such analysis grows quadratically with the
instruction word size.

• This puts a limit on the degree of parallelism that can be achieved
with SPAs such that a degree of parallelism higher than four will be
impractical.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.4 Instruction-Level Parallelism
• Very Long Instruction Word (VLIW)

– The compiler performs dependency analysis and determines the
appropriate groupings/scheduling of operations.

– Operations that can be performed simultaneously are grouped
into a Very Long Instruction Word (VLIW).

– Therefore, the instruction word is made long enough in order to
accommodate the maximum possible degree of parallelism.

– In VLIW, resource binding can be done by devoting each field of
an instruction word to one and only one functional unit.

– However, this arrangement will lead to a limit on the mix of
instructions that can be issued per cycle.

– A more flexible approach is to allow a given instruction field to be
occupied by different kinds of operations.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.5 Arithmetic Pipeline
• Fixed-Point Arithmetic Pipelines

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.5 Arithmetic Pipeline
• Floating-Point Arithmetic Pipelines

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.5 Arithmetic Pipeline
• Pipelined Multiplication using Carry-Save Addition

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.6 Summary
• In this chapter, the basic principles involved in designing

pipeline architectures were considered.
• Our coverage started with a discussion on a number of

metrics that can be used to assess the goodness of a
pipeline.

• We then moved to present a general discussion on the
main problems that need to be considered in designing a
pipelined architecture.
– In particular we considered two main problems: Instruction and

data dependency.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

9.6 Summary
• The effect of these two problems on the performance of

a pipeline has been elaborated.
• Some possible techniques that can be used to reduce

the effect of the instruction and data dependency have
been introduced and illustrated.

• An example of a recent pipeline architecture, the ARM
11 microarchitecture, has been presented.

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

