
Chapter 8

Input – Output Design and
Organization

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

8.1 Basic Concepts

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• The Figure below shows a simple arrangement for
connecting the processor and the memory in a given
computer system to an input device and an output
device.

• A single bus consisting of the required address, data,
and control lines is used to connect the system's
components.

Processor Memory

Output Device
(Graphic Display)

Input Device
(Keyboard)

8.1 Basic Concepts

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• There exists a big difference in the rate at which a
processor can process information and those of input
and output devices.

• A simple way of communication between the processor
and I/O devices, called the I/O protocol, requires the
availability of the input and output registers.

• A mechanism according to which the processor can
address those input and output registers must be
adopted.

• More than one arrangement exists to satisfy the above
mentioned requirements.

8.1 Basic Concepts

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• In the first arrangement, I/O devices are assigned
particular addresses, isolated from the address space
assigned to the memory.

• The Execution of an Input Instruction at an input device
address will cause the character stored in the Input
Register of that device to be transferred to a specific
register in the CPU.

• Similarly, the execution of an Output Instruction at an
output device address will cause the character stored in
a specific register in the CPU to be transferred to the
Output Register of that output device.

• This arrangement is called Shared I/O.

8.1 Basic Concepts

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Shared I/O arrangement:

8.1 Basic Concepts

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• The main advantage of the shared I/O arrangement is
the separation between the memory address space and
that of the I/O devices.

• Its main disadvantage is the need to have special Input
and Output Instructions in the processor instruction set.

• The Shared I/O arrangement is mostly adopted by Intel.

8.1 Basic Concepts

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• The second possible I/O arrangement is to deal with
Input and Output Registers as if they are regular memory
locations.

• In this case, a Read operation from the address
corresponding to the Input Register of an input device,
e.g., Read Device6, is equivalent to performing an Input
Operation from the input register in Device #6.

• Similarly, a Write operation to the address corresponding
to the Output Register of an output device, e.g., Write
Device9, is equivalent to performing an Output Operation
into the output register in Device #9.

• This arrangement is called Memory-Mapped I/O.

8.1 Basic Concepts

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Memory-mapped I/O arrangement:

8.1 Basic Concepts

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• The main advantage of the memory-mapped I/O is the
use of the read and write instructions of the processor to
perform the input and output operations, respectively.

• It eliminates the need for introducing special I/O
instructions.

• The main disadvantage of the memory-mapped I/O is
the need to reserve a certain part of the memory address
space for addressing I/O devices, i.e., a reduction in the
available memory address space.

• The memory-mapped I/O has been mostly adopted by
Motorola.

8.2 Programmed I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Example of an 8 I/O device connection to a processor

8.2 Programmed I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• The following protocol steps (program) have to be
followed:
– The processor executes an input instruction from device 6, e.g.,

INPUT 6. The effect of executing this instruction is to send the
device number to the address decoder circuitry in each input
device in order to identify the specific input device to be involved.
In this case, the output of the decoder in Device #6 will be
enabled, while the outputs of all other decoders will be disabled.

– The buffers (in the figure we assumed that there are 8 such
buffers) holding the data in the specified input device (Device #6)
will be enabled by the output of the address decoder circuitry.

– The data output of the enabled buffers will be available on the
data bus.

– The instruction decoding will gate the data available on the data
bus into the input of a particular register in the CPU, normally the
accumulator.

8.2 Programmed I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Output operations can be performed in a similar way.
– The only difference will be the direction of data transfer, which

will be from a specific CPU register to the output register in the
specified output device.

• I/O operations performed in this manner are called
Programmed I/O. They are performed under the CPU
control.

• A complete instruction fetch, decode, and execute cycle
will have to be executed for every input and every output
operation. Programmed I/O is useful in cases whereby
one character at a time is to be transferred.

• Although simple, programmed I/O is slow.

8.2 Programmed I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• A mechanism should be adopted in order to handle the
substantial speed difference between I/O devices and
the processor.
– For example, ensure that a character sent to the output register

of an output device, such as a screen, is not over written by the
processor (due to the processor's high speed) before it is
displayed and that a character available in the input register of a
keyboard is read only once by the processor.

• A mechanism that can be implemented requires the
availability of a Status Bit (Bin) in the interface of each
input device and a Status Bit (Bin) in the interface of each
output device.

8.2 Programmed I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Whenever an input device has a character available in
its input register, it indicates that by setting Bin =1.

• A program in the processor can be used to continuously
monitor Bin.

• When the program sees that Bin =1, it will interpret that to
mean a character is available in the input register of that
device.

• Reading such character will require executing that
protocol explained before.

8.2 Programmed I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Whenever the character is read, the program can reset Bin = 0, thus
avoiding multiple read of the same character.

• In a similar manner, the processor can deposit a character in the
output register of an output device only when Bin = 0.

• It is only after the output device has displayed the character that it
sets Bin =1, indicating to the monitoring program that the output
device is ready to receive the next character.

• The process of checking the status of I/O devices in order to
determine their readiness for receiving and/or sending characters, is
called Software I/O Polling.

• In addition to the I/O polling, two other mechanisms can be used to
carry out I/O operations:
– Interrupt-driven I/O and
– Direct Memory Access (DMA).

8.3 Interrupt-Driven I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Interrupt Hardware

– Computers are provided with Interrupt Hardware capability in the
form of specialized Interrupt Lines to the processor.

– These lines are used to send interrupt signals to the processor.
– In the case of I/O, there exists more than one I/O device. The

processor should be provided with a mechanism that enables it
to handle simultaneous interrupt requests and to recognize the
interrupting device.

• Two basic schemes can be implemented to achieve this task:
– Daisy Chain Bus Arbitration (DCBA) and
– Independent Source Bus Arbitration (ISBA)

8.3 Interrupt-Driven I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Interrupt Hardware: Daisy Chain Interrupt Arrangement

8.3 Interrupt-Driven I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Interrupt Hardware: Independent Interrupt Arrangement

8.3 Interrupt-Driven I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Interrupt in Operating Systems
– When an interrupt occurs, the operating system gains control.
– The operating system saves the state of the interrupted process,

analyzes the interrupt, and passes control to the appropriate
routine to handle the interrupt.

• There are several types of interrupts including I/O interrupts.
• An I/O interrupt notifies the operating system that an I/O

device has completed or suspended its operation and needs
some service from the CPU.

– To process an interrupt, the context of the current process must
be saved and the interrupt handling routine must be invoked.
This process is called context switching.

– A process’ context has two parts:
• Processor context: is the state of the CPU’s registers

including program counter (PC), program status words
(PSWs), and other registers.

• Memory context: is the state of the program’s memory
including the program and data.

8.3 Interrupt-Driven I/O

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Interrupt in Operating Systems

– The layers of software involved in I/O operations:

– First, the program issues an I/O request via an I/O call.
– The request is passed through to the I/O device.
– When the device completes the I/O, an interrupt is sent and the

interrupt handler is invoked.
– Eventually, control is relinquished back to the process that

initiated the I/O.

8.4 Direct Memory Access (DMA)

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• The main idea of Direct Memory Access (DMA) is to
enable peripheral devices to cut out the "middle man"
role of the CPU in data transfer.

• It allows peripheral devices to transfer data directly from
and to memory without the intervention of the CPU.

• Having peripheral devices access memory directly would
allow the CPU to do other work, which would lead to
improved performance, especially in the cases of large
transfers.

• The DMA controller is a piece of hardware that controls
one or more peripheral devices.
– It allows devices to transfer data to or from the system's memory

without the help of the processor.

8.4 Direct Memory Access (DMA)

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• In a typical DMA transfer, some event notifies the DMA
controller that data needs to be transferred to or from
memory.

• Both the DMA and CPU use memory bus and only one
or the other can use the memory at the same time.

• The DMA controller then sends a request to the CPU
asking its permission to use the bus.

• The CPU returns an acknowledgment to the DMA
controller granting it bus access.

• The DMA can now take control of the bus to
independently conduct memory transfer.

• When the transfer is complete, the DMA relinquishes its
control of the bus to the CPU.

• Processors that support DMA provide one or more input
signals that the bus requester can assert to gain control
of the bus and one or more output signals that the CPU
asserts to indicate it has relinquished the bus.

8.4 Direct Memory Access (DMA)

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• DMA controller shares the CPU’s memory bus:

8.4 Direct Memory Access (DMA)

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• The following steps summarize the DMA Operations:

– DMA Controller initiates data transfer.
– Data is moved (increasing the address in memory, and reducing

the count of words to be moved).
– When word count reaches zero, the DMA informs the CPU of the

termination by means of an interrupt.
– The CPU regains access to the memory bus.

8.5 Buses

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Synchronous Buses
– In synchronous busses, the steps of data transfer take place at

fixed clock cycles.
– Everything is synchronized to the bus clock and clock signals are

made available to both master and slave.
– A transfer may take multiple bus cycles depending on the speed

parameters of the bus and the two ends of the transfer.
– Synchronous buses are simple and easily implemented.
– However, when connecting devices with varying speeds to a

synchronous bus, the slowest device will determine the speed of
the bus.

– Also, the synchronous bus length could be limited to avoid clock-
skewing problem.

8.5 Buses

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Asynchronous Buses
– There are no fixed clock cycles in asynchronous busses.
– Handshaking is used instead.
– The master asserts the data-ready line (point 1 in the figure) until

it sees a data-accept signal.
– When the slave sees data-ready signal, it will assert the data-

accept line (point 2 in the figure).
– The rising of the data-accept line will trigger the falling of the

data-ready line and the removal of data from the bus.
– The falling of the data-ready line (point 3 in the figure) will trigger

the falling of the data-accept line (point 4 in the figure).
– This handshaking, which is called fully interlocked, is repeated

until the data is completely transferred.
– Asynchronous bus is appropriate for different speed devices.

8.5 Buses

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Asynchronous Buses

8.5 Buses

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Bus Arbitration
– Centralized Arbitration

• In centralized arbitration schemes, a single arbiter is used to select
the next master.

• A simple form of centralized arbitration uses a bus request line, a
bus grant line, and a bus busy line.

• Each of these lines is shared by potential masters, which are daisy-
chained in a cascade.

• each of the potential masters can submit a bus request at any time.
• A fixed priority is set among the masters from left to right.

8.5 Buses

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Bus Arbitration
– Centralized Arbitration

• When a bus request is received at a central bus arbiter, it issues a
bus grant by asserting the bus grant line.

• When the potential master that is closest to the arbiter (Potential
master 1) sees the bus-grant signal, it checks to see if it had made
a bus request.

• If yes, it takes over the bus and stops propagation of the bus grant
signal any further.

• If it has not made a request, it will simple turn the bus grant signal to
the next master to the right (Potential master 2), and so on.

• When the transaction is complete, the busy line is deasserted.

8.5 Buses

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Bus Arbitration
– Centralized Arbitration

• Instead of using shared request and grant lines, multiple bus
request and bus grant lines can be used.

• In one scheme, each master will have its own independent request
and grant line.

• The central arbiter can employ any priority based or fairness based
tiebreaker.

• Another scheme allows the masters to have multiple priority levels.
– For each priority level, there is a bus request and a bus grant lines.

» Within each priority level, daisy chain is used.
» In this scheme, each device is attached to the daisy chain of one

priority level.
» If the arbiter receives multiple bus requests from different levels, it

grants the bus to the level with the highest priority.
» Daisy chaining is used among the devices of that level.

8.5 Buses

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Bus Arbitration
– Centralized Arbitration

» Four devices included in two priority levels.
» Potential Master 1 and Potential master 3 are daisy chained in

level 1 and Potential Master 2 and Potential Master 4 are daisy
chained in level 2.

8.5 Buses

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• Bus Arbitration
– Decentralized Arbitration

• In decentralized arbitration schemes, priority based arbitration is
usually used in a distributed fashion.

• Each potential master has a unique arbitration number, which is
used in resolving conflicts when multiple requests are submitted.

• For example, a conflict can always be resolved in favor of the
device with the highest arbitration number.

• The question now is how to determine which device has the highest
arbitration number?

– One method is that a requesting device would make its unique
arbitration number available to all other devices.

– Each device compares that number with its own arbitration number.
– The device with the smaller number is always dismissed.
– Eventually, the requester with the highest arbitration number will

survive and be granted bus access.

8.6 Input-Output Interfaces

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• An interface is a data path between two separate
devices in a computer system.

• Interface to buses can be classified based on the
number of bits that are transmitted at a given time to
serial versus parallel ports.

• In a serial port, only 1 bit of data is transferred at a time.
• Mice and modems are usually connected to serial ports.
• A parallel port allows more than 1 bit of data to be

processed at once.
• Printers are the most common peripheral devices

connected to parallel ports.

8.7 Summary

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• One of the major features in a computer system is its
ability to exchange data with other devices and to allow
the user to interact with the system.

• This chapter focused on the I/O system and the way the
processor and the I/O devices exchange data in a
computer system.

• The chapter described three ways of organizing I/O:
– Programmed I/O

• The CPU handles the transfers, which take place between registers
and the devices.

– Interrupt driven I/O
• CPU handles data transfers and an I/O module is running

concurrently.
– DMA.

• Data are transferred between memory and I/O devices without
intervention of the CPU.

8.7 Summary

Fundamentals of Computer Organization and Architecture Mostafa Abd-El-Barr & Hesham El-Rewini

• We also studied two methods for synchronization:
– Polling

• the processor polls the device while waiting for I/O to complete.
Clearly processor cycles are wasted in this method.

– Interrupts
• Processors are free to switch to other tasks during I/O.
• Devices assert interrupts when I/O is complete.
• Interrupts incur some delay penalty with them.

– The chapter also covered busses and interfaces.

