The Concept of computer Organization

Computer organization deals with structural relationships that are not visible to the programmer, such as interfaces to peripheral devices, the clock frequency, and the technology used for the memory. In describing computer system, a distinction is often made between computer architecture and computer organization.

Computer architecture refers to those attributes of a system visible to a programmer, or put another way, those attributes that have a direct impact on the logical execution of a program.

Computer organization refers to the operational units and their interconnection that realize the architecture specification.

Examples of architecture attributes include the instruction set, the number of bit to represent various data types (e.g.., numbers, and characters), I/O mechanisms, and technique for addressing memory.

Examples of organization attributes include those hardware details transparent to the programmer, such as control signals, interfaces between the computer and peripherals, and the memory technology used.

As an example, it is an architectural design issue whether a computer will have a multiply instruction. It is an organizational issue whether that instruction will be implemented by a special multiply unit or by a mechanism that makes repeated use of the add unit of the system. The organization decision may be bases on the anticipated frequency of use of the multiply instruction, the relative speed of the two approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organization has been an important one. Many computer manufacturers offer a family of computer model, all with the same architecture but with differences in organization. Consequently, the different models in the family have different price and performance characteristics. Furthermore, an architecture may survive many years, but its organization changes with changing technology.

To understand digital signal processing systems, we must understand a little about how computers compute. The modern definition of a computer is an electronic device that performs calculations on data, presenting the results to humans or other computers in a variety of ways.
	[image: image1.png]

Figure 1: Generic computer hardware organization.

The generic computer contains input devices (keyboard, mouse, A/D (analog-to-digital) converter, etc.), a computational unit, and output devices (monitors, printers, D/A converters). The computational unit is the computer's heart, and usually consists of a central processing unit (CPU), a memory, and an input/output (I/O) interface. What I/O devices might be present on a given computer vary greatly.

The generic computer contains input devices (keyboard, mouse, A/D (analog-to-digital) converter, etc.), a computational unit, and output devices (monitors, printers, D/A converters). The computational unit is the computer's heart, and usually consists of a central processing unit (CPU), a memory, and an input/output (I/O) interface. What I/O devices might be present on a given computer vary greatly.

A simple computer operates fundamentally in discrete time. Computers are clocked devices, in which computational steps occur periodically according to ticks of a clock. This description belies clock speed: When you say "I have a 1 GHz computer," you mean that your computer takes 1 nanosecond to perform each step. A "step" does not, unfortunately, necessarily mean a computation like an addition; computers break such computations down into several stages, which means that the clock speed need not express the computational speed. Computational speed is expressed in units of millions of instructions/second (Mips). Your 1 GHz computer (clock speed) may have a computational speed of 200 Mips.

Computers perform integer (discrete-valued) computations. Computer calculations can be numeric (obeying the laws of arithmetic), logical (obeying the laws of an algebra), or symbolic (obeying any law you like). Each computer instruction that performs an elementary numeric calculation (an addition, a multiplication, or a division) does so only for integers. The sum or product of two integers is also an integer, but the quotient of two integers is likely to not be an integer. How does a computer deal with numbers that have digits to the right of the decimal point? This problem is addressed by using the so-called floating-point representation of real numbers. At its heart, however, this representation relies on integer-valued computations.

Data Representation

In order for the PC to process information, it is necessary that this information be in special cells called registers. The registers are groups of 8 or 16 flip-flops.

A flip-flop is a device capable of storing two levels of voltage, a low one, regularly 0.5 volts, and another one, commonly of 5 volts. The low level of energy in the flip-flop is interpreted as off or 0, and the high level as on or 1. These states are usually known as bits, which are the smallest information unit in a computer.

A group of 16 bits is known as word; a word can be divided in groups of 8 bits called bytes, and the groups of 4 bits are called nibbles.

Numeric systems

The numeric system we use daily is the decimal system, but this system is not convenient for machines since the information is handled codified in the shape of on or off bits; this way of codifying takes us to the necessity of knowing the positional calculation which will allow us to express a number in any base where we need it.

Radix number systems

The numeric system we use daily is the decimal system, but this system is not convenient for machines since the information is handled codified in the shape of on or off bits; this way of codifying takes us to the necessity of knowing the positional calculation which will allow us to express a number in any base where we need it.

A base of a number system or radix defines the range of values that a digit may have.

In the binary system or base 2, there can be only two values for each digit of a number, either a "0" or a "1".

In the octal system or base 8, there can be eight choices for each digit of a number:

"0", "1", "2", "3", "4", "5", "6", "7".

In the decimal system or base 10, there are ten different values for each digit of a number:

"0", "1", "2", "3", "4", "5", "6", "7", "8", "9".

In the hexadecimal system, we allow 16 values for each digit of a number:

"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", and "F".

Where “A” stands for 10, “B” for 11 and so on.

Conversion among radices

- Convert from Decimal to Any Base

Let’s think about what you do to obtain each digit. As an example, let's start with a decimal number 1234 and convert it to decimal notation. To extract the last digit, you move the decimal point left by one digit, which means that you divide the given number by its base 10.

 1234/10 = 123 + 4/10

The remainder of 4 is the last digit. To extract the next last digit, you again move the decimal point left by one digit and see what drops out.

 123/10 = 12 + 3/10

The remainder of 3 is the next last digit. You repeat this process until there is nothing left. Then you stop. In summary, you do the following:

 Quotient Remainder

 1234/10 = 123 4 --------+

 123/10 = 12 3 ------+ |

 12/10 = 1 2 ----+ | |

 1/10 = 0 1 --+ | | |(Stop when the quotient is 0)

 | | | |

 1 2 3 4 (Base 10)

Now, let's try a nontrivial example. Let's express a decimal number 1341 in binary notation. Note that the desired base is 2, so we repeatedly divide the given decimal number by 2.

 Quotient Remainder

 1341/2 = 670 1 ----------------------+

 670/2 = 335 0 --------------------+ |

 335/2 = 167 1 ------------------+ | |

 167/2 = 83 1 ----------------+ | | |

 83/2 = 41 1 --------------+ | | | |

 41/2 = 20 1 ------------+ | | | | |

 20/2 = 10 0 ----------+ | | | | | |

 10/2 = 5 0 --------+ | | | | | | |

 5/2 = 2 1 ------+ | | | | | | | |

 2/2 = 1 0 ----+ | | | | | | | | |

 1/2 = 0 1 --+ | | | | | | | | | |(Stop when the

 | | | | | | | | | | | quotient is 0)

 1 0 1 0 0 1 1 1 1 0 1 (BIN; Base 2)

Let's express the same decimal number 1341 in octal notation.

 Quotient Remainder

 1341/8 = 167 5 --------+

 167/8 = 20 7 ------+ |

 20/8 = 2 4 ----+ | |

 2/8 = 0 2 --+ | | | (Stop when the quotient is 0)

 | | | |

 2 4 7 5 (OCT; Base 8)

Let's express the same decimal number 1341 in hexadecimal notation.

 Quotient Remainder

 1341/16 = 83 13 ------+

 83/16 = 5 3 ----+ |

 5/16 = 0 5 --+ | | (Stop when the quotient is 0)

 | | |

 5 3 D (HEX; Base 16)

In conclusion, the easiest way to convert fixed point numbers to any base is to convert each part separately. We begin by separating the number into its integer and fractional part. The integer part is converted using the remainder method, by using a successive division of the number by the base until a zero is obtained. At each division, the reminder is kept and then the new number in the base r is obtained by reading the remainder from the lat remainder upwards.

The conversion of the fractional part can be obtained by successively multiplying the fraction with the base. If we iterate this process on the remaining fraction, then we will obtain successive significant digit. This methods form the basis of the multiplication methods of converting fractions between bases

Example. Convert the decimal number 3315 to hexadecimal notation. What about the hexadecimal equivalent of the decimal number 3315.3?

Solution:

 Quotient Remainder

 3315/16 = 207 3 ------+

 207/16 = 12 15 ----+ |

 12/16 = 0 12 --+ | | (Stop when the quotient is 0)

 | | |

 C F 3 (HEX; Base 16)

 (HEX; Base 16)

 Product Integer Part 0.4 C C C ...

 -------------------------------- | | | |

 0.3*16 = 4.8 4 ----+ | | | | |

 0.8*16 = 12.8 12 ------+ | | | |

 0.8*16 = 12.8 12 --------+ | | |

 0.8*16 = 12.8 12 ----------+ | |

 : ---------------------+

 :

 Thus, 3315.3 (DEC) --> CF3.4CCC... (HEX)

- Convert From Any Base to Decimal

Let's think more carefully what a decimal number means. For example, 1234 means that there are four boxes (digits); and there are 4 one's in the right-most box (least significant digit), 3 ten's in the next box, 2 hundred's in the next box, and finally 1 thousand's in the left-most box (most significant digit). The total is 1234:

 Original Number: 1 2 3 4

 | | | |

 How Many Tokens: 1 2 3 4

 Digit/Token Value: 1000 100 10 1

 Value: 1000 + 200 + 30 + 4 = 1234

or simply, 1*1000 + 2*100 + 3*10 + 4*1 = 1234

Thus, each digit has a value: 10^0=1 for the least significant digit, increasing to 10^1=10, 10^2=100, 10^3=1000, and so forth.

Likewise, the least significant digit in a hexadecimal number has a value of 16^0=1 for the least significant digit, increasing to 16^1=16 for the next digit, 16^2=256 for the next, 16^3=4096 for the next, and so forth. Thus, 1234 means that there are four boxes (digits); and there are 4 one's in the right-most box (least significant digit), 3 sixteen's in the next box, 2 256's in the next, and 1 4096's in the left-most box (most significant digit). The total is:

 1*4096 + 2*256 + 3*16 + 4*1 = 4660

In summary, the conversion from any base to base 10 can be obtained from the formulae

[image: image2.wmf]å

-

-

=

=

1

10

n

m

i

i

i

b

d

x

 Where b is the base, di the digit at position i, m the number of digit after the decimal point, n the number of digits of the integer part and X10 is the obtained number in decimal. This form the basic of the polynomial method of converting numbers from any base to decimal

Example. Convert 234.14 expressed in an octal notation to decimal.

2*82 + 3*81 + 4*80+1*8-1 + 4*8-2

=2*64 +3*8 +4*1 +1/8 +4/64 =156.1875

Example. Convert the hexadecimal number 4B3 to decimal notation. What about the decimal equivalent of the hexadecimal number 4B3.3?

Solution:

 Original Number: 4 B 3 . 3

 | | | |

 How Many Tokens: 4 11 3 3

 Digit/Token Value: 256 16 1 0.0625

 Value: 1024 +176 + 3 + 0.1875 = 1203.1875

Example. Convert 234.14 expressed in an octal notation to decimal.

Solution:

 Original Number: 2 3 4 . 1 4

 | | | | |

 How Many Tokens: 2 3 4 1 4

 Digit/Token Value: 64 8 1 0.125 0.015625

 Value: 128 + 24 + 4 + 0.125 + 0.0625 = 156.1875

- Relationship between Binary - Octal and Binary-hexadecimal

As demonstrated by the table bellow, there is a direct correspondence between the binary system and the octal system, with three binary digits corresponding to one octal digit. Likewise, four binary digits translate directly into one hexadecimal digit.

 BIN OCT HEX DEC

 0000 00 0 0

 0001 01 1 1

 0010 02 2 2

 0011 03 3 3

 0100 04 4 4

 0101 05 5 5

 0110 06 6 6

 0111 07 7 7

 1000 10 8 8

 1001 11 9 9

 1010 12 A 10

 1011 13 B 11

 1100 14 C 12

 1101 15 D 13

 1110 16 E 14

 1111 17 F 15

With such relationship, In order to convert a binary number to octal, we partition the base 2 number into groups of three starting from the radix point, and pad the outermost groups with 0’s as needed to form triples. Then, we convert each triple to the octal equivalent.

For conversion from base 2 to base 16, we use groups of four.

 Consider converting 101102 to base 8:

101102 = 0102 1102 = 28 68 = 268

Notice that the leftmost two bits are padded with a 0 on the left in order to create a full triplet.

Now consider converting 101101102 to base 16:

101101102 = 10112 01102 = B16 616 = B616

(Note that ‘B’ is a base 16 digit corresponding to 1110. B is not a variable.)

The conversion methods can be used to convert a number from any base to any other base, but it may not be very intuitive to convert something like 513.03 to base 7. As an aid in performing an unnatural conversion, we can convert to the more familiar base 10 form as an intermediate step, and then continue the conversion from base 10 to the target base. As a general rule, we use the polynomial method when converting into base 10, and we use the remainder and multiplication methods when converting out of base 10.

Binary coded Decimal

In computing and electronic systems, binary-coded decimal (BCD) is an encoding for decimal numbers in which each digit is represented by its own binary sequence. Its main virtue is that it allows easy conversion to decimal digits for printing or display and faster decimal calculations. Its drawbacks are the increased complexity of circuits needed to implement mathematical operations and a relatively inefficient encoding. It occupies more space than a pure binary representation.

In BCD, a digit is usually represented by four bits which, in general, represent the values/digits/characters 0-9

To BCD-encode a decimal number using the common encoding, each decimal digit is stored in a four-bit nibble.

Decimal: 0 1 2 3 4 5 6 7 8 9

BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Thus, the BCD encoding for the number 127 would be:

 0001 0010 0111

Numeric complements

The radix complement of an n digit number y in radix b is, by definition, bn − y. Adding this to x results in the value x + bn − y or x − y + bn. Assuming y ≤ x, the result will always be greater than bn and dropping the initial '1' is the same as subtracting bn, making the result x − y + bn − bn or just x − y, the desired result.

The radix complement is most easily obtained by adding 1 to the diminished radix complement, which is (bn − 1) − y. Since (bn − 1) is the digit b − 1 repeated n times (because bn − 1 = bn − 1n = (b − 1)(bn − 1 + bn − 2 + ... + b + 1) = (b − 1)bn − 1 + ... + (b − 1), see also binomial numbers), the diminished radix complement of a number is found by complementing each digit with respect to b − 1 (that is, subtracting each digit in y from b − 1). Adding 1 to obtain the radix complement can be done separately, but is most often combined with the addition of x and the complement of y.

In the decimal numbering system, the radix complement is called the ten's complement and the diminished radix complement the nines' complement.

In binary, the radix complement is called the two's complement and the diminished radix complement the ones' complement. The naming of complements in other bases is similar.

- Decimal example

To subtract a decimal number y from another number x using the method of complements, the ten's complement of y (nines' complement plus 1) is added to x. Typically, the nines' complement of y is first obtained by determining the complement of each digit. The complement of a decimal digit in the nines' complement system is the number that must be added to it to produce 9. The complement of 3 is 6, the complement of 7 is 2, and so on. Given a subtraction problem:

 873 (x)

- 218 (y)

The nines' complement of y (218) is 781. In this case, because y is three digits long, this is the same as subtracting y from 999. (The number of 9's is equal to the number of digits of y.)

Next, the sum of x, the nines' complement of y, and 1 is taken:

 873 (x)

+ 781 (complement of y)

+ 1 (to get the ten's complement of y)

=====

 1655

The first "1" digit is then dropped, giving 655, the correct answer.

If the subtrahend has fewer digits than the minuend, leading zeros must be added which will become leading nines when the nines' complement is taken. For example:

 48032 (x)

- 391 (y)

becomes the sum:

 48032 (x)

+ 99608 (nines' complement of y)

+ 1 (to get the ten's complement)

=======

 147641

Dropping the "1" gives the answer: 47641

- Binary example

The method of complements is especially useful in binary (radix 2) since the ones' complement is very easily obtained by inverting each bit (changing '0' to '1' and vice versa). And adding 1 to get the two's complement can be done by simulating a carry into the least significant bit. For example:

 01100100 (x, equals decimal 100)

- 00010110 (y, equals decimal 22)

becomes the sum:

 01100100 (x)

+ 11101001 (ones' complement of y)

+ 1 (to get the two's complement)

==========

 101001110

Dropping the initial "1" gives the answer: 01001110 (equals decimal 78)

Signed fixed point numbers

Up to this point we have considered only the representation of unsigned fixed point numbers. The situation is quite different in representing signed fixed point numbers. There are four different ways of representing signed numbers that are commonly used: sign-magnitude, one’s complement, two’s complement, and excess notation. We will cover each in turn, using integers for our examples.

The Table below shows for a 3-bit number how the various representations appear.

	Decimal
	Unsigned
	Sign–Mag.
	1’s Comp.
	2’s Comp.
	Excess 4

	7
	111
	–
	–
	–
	–

	6
	110
	–
	–
	–
	–

	5
	101
	–
	–
	–
	–

	4
	100
	–
	–
	–
	–

	3
	011
	011
	011
	011
	111

	2
	010
	010
	010
	010
	110

	1
	001
	001
	001
	001
	101

	+0
	000
	000
	000
	000
	100

	-0
	–
	100
	111
	000
	100

	-1
	–
	101
	110
	111
	011

	-2
	–
	110
	101
	110
	010

	-3
	–
	111
	100
	101
	001

	-4
	–
	–
	–
	100
	000

Table1: 3-bit Integer Representations

- Signed Magnitude Representation

The signed magnitude (also referred to as sign and magnitude) representation is most familiar to us as the base 10 number system. A plus or minus sign to the left of a number indicates whether the number is positive or negative as in +1210 or 1210. In the binary signed magnitude representation, the leftmost bit is used for the sign, which takes on a value of 0 or 1 for ‘+’ or ‘’, respectively. The remaining bits contain the absolute magnitude.

Consider representing (+12)10 and (12)10 in an eight-bit format:

(+12)10 = (00001100)2

(12)10 = (10001100)2

The negative number is formed by simply changing the sign bit in the positive number from 0 to 1. Notice that there are both positive and negative representations for zero: +0= 00000000 and -0= 10000000.

- One’s Complement Representation

The one’s complement operation is trivial to perform: convert all of the 1’s in the number to 0’s, and all of the 0’s to 1’s. See the fourth column in Table1 for examples. We can observe from the table that in the one’s complement representation the leftmost bit is 0 for positive numbers and 1 for negative numbers, as it is for the signed magnitude representation. This negation, changing 1’s to 0’s and changing 0’s to 1’s, is known as complementing the bits. Consider again representing (+12)10 and (12)10 in an eight-bit format, now using the one’s complement representation:

(+12)10 = (00001100)2

(12)10 = (11110011)2

Note again that there are representations for both +0 and 0, which are 00000000 and 11111111, respectively. As a result, there are only 28 1 = 255 different numbers that can be represented even though there are 28 different bit patterns.

The one’s complement representation is not commonly used. This is at least partly due to the difficulty in making comparisons when there are two representations for 0. There is also additional complexity involved in adding numbers.

- Two’s Complement Representation

The two’s complement is formed in a way similar to forming the one’s complement: complement all of the bits in the number, but then add 1, and if that addition results in a carry-out from the most significant bit of the number, discard the carry-out.

Examination of the fifth column of Table above shows that in the two’s complement representation, the leftmost bit is again 0 for positive numbers and is 1 for negative numbers. However, this number format does not have the unfortunate characteristic of signed-magnitude and one’s complement representations: it has only one representation for zero. To see that this is true, consider forming the negative of (+0)10, which has the bit pattern: (+0)10 = (00000000)2

Forming the one’s complement of (00000000)2 produces (11111111)2 and adding

1 to it yields (00000000)2, thus (0)10 = (00000000)2. The carry out of the leftmost position is discarded in two’s complement addition (except when detecting an overflow condition). Since there is only one representation for 0, and since all bit patterns are valid, there are 28 = 256 different numbers that can be represented.

Consider again representing (+12)10 and (12)10 in an eight-bit format, this time using the two’s complement representation. Starting with (+12)10 =(00001100)2, complement, or negate the number, producing (11110011)2.

Now add 1, producing (11110100)2, and thus (12)10 = (11110100)2:

(+12)10 = (00001100)2

(12)10 = (11110100)2

There is an equal number of positive and negative numbers provided zero is considered to be a positive number, which is reasonable because its sign bit is 0. The positive numbers start at 0, but the negative numbers start at 1, and so the magnitude of the most negative number is one greater than the magnitude of the most positive number. The positive number with the largest magnitude is +127, and the negative number with the largest magnitude is 128. There is thus no positive number that can be represented that corresponds to the negative of 128. If we try to form the two’s complement negative of 128, then we will arrive at a negative number, as shown below:

(128)10 = (10000000)2

(128)10 = (01111111

(128)10 + (+0000001)2

(128)10 ——————)2

(128)10 = (10000000)2

The two’s complement representation is the representation most commonly used in conventional computers.

- Excess Representation

In the excess or biased representation, the number is treated as unsigned, but is “shifted” in value by subtracting the bias from it. The concept is to assign the smallest numerical bit pattern, all zeros, to the negative of the bias, and assign the remaining numbers in sequence as the bit patterns increase in magnitude. A convenient way to think of an excess representation is that a number is represented as the sum of its two’s complement form and another number, which is known as the “excess,” or “bias.” Once again, refer to Table 2.1, the rightmost column, for examples.

Consider again representing (+12)10 and (12)10 in an eight-bit format but now using an excess 128 representation. An excess 128 number is formed by adding 128 to the original number, and then creating the unsigned binary version. For (+12)10, we compute (128 + 12 = 140)10 and produce the bit pattern (10001100)2. For (12)10, we compute (128 + 12 = 116)10 and produce the bit pattern (01110100)2

(+12)10 = (10001100)2

(12)10 = (01110100)2

Note that there is no numerical significance to the excess value: it simply has the effect of shifting the representation of the two’s complement numbers.

There is only one excess representation for 0, since the excess representation is simply a shifted version of the two’s complement representation. For the previous case, the excess value is chosen to have the same bit pattern as the largest negative number, which has the effect of making the numbers appear in numerically sorted order if the numbers are viewed in an unsigned binary representation.

Thus, the most negative number is (128)10 = (00000000)2 and the most positive number is (+127)10 = (11111111)2. This representation simplifies making comparisons between numbers, since the bit patterns for negative numbers have numerically smaller values than the bit patterns for positive numbers. This is important for representing the exponents of floating point numbers, in which exponents of two numbers are compared in order to make them equal for addition and subtraction.

choosing a bias:

The bias chosen is most often based on the number of bits (n) available for representing an integer. To get an approximate equal distribution of true values above and below 0, the bias should be 2(n-1) or 2(n-1) - 1

Floating point representation

Floating point is a numerical representation system in which a string of digits represent a real number. The name floating point refers to the fact that the radix point (decimal point or more commonly in computers, binary point) can be placed anywhere relative to the digits within the string. A fixed point is of the form a bn where a is the fixed point part often referred to as the mantissa, or significand of the number b represents the base and n the exponent. Thus a floating point number can be characterized by a triple of numbers: sign, exponent, and significand.

- Normalization

A potential problem with representing floating point numbers is that the same number can be represented in different ways, which makes comparisons and arithmetic operations difficult. For example, consider the numerically equivalent forms shown below:

3584.1 100 = 3.5841 103 = .35841 104.

In order to avoid multiple representations for the same number, floating point numbers are maintained in normalized form. That is, the radix point is shifted to the left or to the right and the exponent is adjusted accordingly until the radix point is to the left of the leftmost nonzero digit. So the rightmost number above is the normalized one. Unfortunately, the number zero cannot be represented in this scheme, so to represent zero an exception is made. The exception to this rule is that zero is represented as all 0’s in the mantissa.

If the mantissa is represented as a binary, that is, base 2, number, and if the normalization condition is that there is a leading “1” in the normalized mantissa, then there is no need to store that “1” and in fact, most floating point formats do not store it. Rather, it is “chopped off ” before packing up the number for storage, and it is restored when unpacking the number into exponent and mantissa. This results in having an additional bit of precision on the right of the number, due to removing the bit on the left. This missing bit is referred to as the hidden bit, also known as a hidden 1.

For example, if the mantissa in a given format is 1.1010 after normalization, then the bit pattern that is stored is 1010—the left-most bit is truncated, or hidden.

Possible floating point format.

In order to choose a possible floating point format for a given computer, the programmer must take into consideration the following:

The number of words used (i.e. the total number of bits used.)

The representation of the mantissa (2s complement etc.)

The representation of the exponent (biased etc.)

The total number of bits devoted for the mantissa and the exponent

The location of the mantissa (exponent first or mantissa first)

Because of the five points above, the number of ways in which a floating point number may be represented is legion. Many representation use the format of sign bit to represent a floating point where the leading bit represents the sign

	Sign
	Exponent
	Mantissa

- The IEEE standard for floating point

The IEEE (Institute of Electrical and Electronics Engineers) has produced a standard for floating point format arithmetic in mini and micro computers.(i.e. ANSI/IEEE 754-1985). This standard specifies how single precision (32 bit) , double precision (64 bit) and Quadruple (128 bit) floating point numbers are to be represented, as well as how arithmetic should be carried out on them.

General layout

The three fields in an IEEE 754 float
	Sign
	Exponent
	Fraction

Binary floating-point numbers are stored in a sign-magnitude form where the most significant bit is the sign bit, exponent is the biased exponent, and "fraction" is the significand without the most significant bit.

Exponent biasing

The exponent is biased by (2e − 1) − 1, where e is the number of bits used for the exponent field (e.g. if e=8, then (28 − 1) − 1 = 128 − 1 = 127). Biasing is done because exponents have to be signed values in order to be able to represent both tiny and huge values, but two's complement, the usual representation for signed values, would make comparison harder. To solve this, the exponent is biased before being stored by adjusting its value to put it within an unsigned range suitable for comparison.

For example, to represent a number which has exponent of 17 in an exponent field 8 bits wide: exponentfield = 17 + (28 − 1) − 1 = 17 + 128 − 1 = 144.

 Single Precision

The IEEE single precision floating point standard representation requires a 32 bit word, which may be represented as numbered from 0 to 31, left to right. The first bit is the sign bit, S, the next eight bits are the exponent bits, 'E', and the final 23 bits are the fraction 'F':

 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

 0 1 8 9 31

To convert decimal 17.15 to IEEE Single format:

Convert decimal 17 to binary 10001. Convert decimal 0.15 to the repeating binary fraction 0.001001 Combine integer and fraction to obtain binary 10001.001001 Normalize the binary number to obtain 1.0001001001x24 Thus, M = m-1 =0001001001 and E = e+127 = 131 = 10000011.

The number is positive, so S=0.

Align the values for M, E, and S in the correct fields.

	0
	10000011
	00010010011001100110011

Note that if the exponent does not use all the field allocated to it, there will be leading 0’s while for the mantissa, the zero’s will be filled at the end.

Double Precision

The IEEE double precision floating point standard representation requires a 64 bit word, which may be represented as numbered from 0 to 63, left to right. The first bit is the sign bit, S, the next eleven bits are the exponent bits, 'E', and the final 52 bits are the fraction 'F':

 S EEEEEEEEEEE FF

 0 1 11 12

Quad Precision

The IEEE Quad precision floating point standard representation requires a 128 bit word, which may be represented as numbered from 0 to 127, left to right. The first bit is the sign bit, S, the next fifteen bits are the exponent bits, 'E', and the final 128 bits are the fraction 'F':

 S EEEEEEEEEEEEEEE FFF

 0 1 15 16

	
	Single
	Double
	Quadruple

	No. of sign bit
	1
	1
	1

	No. of exponent bit
	8
	11
	15

	No. of fraction
	23
	52
	111

	Total bits used
	32
	64
	128

	Bias
	127
	1023
	16383

Table2 Basic IEEE floating point format

Character Representation

Even though many people used to think of computers as "number crunchers", people figured out long ago that it's just as important to handle character data.

Character data isn't just alphabetic characters, but also numeric characters, punctuation, spaces, etc. Most keys on the central part of the keyboard (except shift, caps lock) are characters.

As we've discussed with signed and unsigned ints, characters need to represented. In particular, they need to be represented in binary. After all, computers store and manipulate 0's and 1's (and even those 0's and 1's are just abstractions---the implementation is typically voltages).

Unsigned binary and two's complement are used to represent unsigned and signed int respectively, because they have nice mathematical properties, in particular, you can add and subtract as you'd expect.

However, there aren't such properties for character data, so assigning binary codes for characters is somewhat arbitrary. The most common character representation is ASCII, which stands for American Standard Code for Information Interchange.

There are two reasons to use ASCII. First, we need some way to represent characters as binary numbers (or, equivalently, as bitstring patterns). There's not much choice about this since computers represent everything in binary.

If you've noticed a common theme, it's that we need representation schemes for everything. However, most importantly, we need representations for numbers and characters. Once you have that (and perhaps pointers), you can build up everything you need.

The other reason we use ASCII is because of the letter "S" in ASCII, which stands for "standard". Standards are good because they allow for common formats that everyone can agree on.

Unfortunately, there's also the letter "A", which stands for American. ASCII is clearly biased for the English language character set. Other languages may have their own character set, even though English dominates most of the computing world (at least, programming and software).

Even though character sets don't have mathematical properties, there are some nice aspects about ASCII. In particular, the lowercase letters are contiguous ('a' through 'z' maps to 9710 through 12210). The upper case letters are also contiguous ('A' through 'Z' maps to 6510 through 9010). Finally, the digits are contiguous ('0' through '9' maps to to 4810 through 5710).

Since they are contiguous, it's usually easy to determine whether a character is lowercase or uppercase (by checking if the ASCII code lies in the range of lower or uppercase ASCII codes), or to determine if it's a digit, or to convert a digit in ASCII to an int value.

ASCII Code (Decimal)

 0 nul 16 dle 32 sp 48 0 64 @ 80 P 96 ` 112 p

 1 soh 17 dc1 33 ! 49 1 65 A 81 Q 97 a 113 q

 2 stx 18 dc2 34 " 50 2 66 B 82 R 98 b 114 r

 3 etx 19 dc3 35 # 51 3 67 C 83 S 99 c 115 s

 4 eot 20 dc4 36 $ 52 4 68 D 84 T 100 d 116 t

 5 enq 21 nak 37 % 53 5 69 E 85 U 101 e 117 u

 6 ack 22 syn 38 & 54 6 70 F 86 V 102 f 118 v

 7 bel 23 etb 39 ' 55 7 71 G 87 W 103 g 119 w

 8 bs 24 can 40 (56 8 72 H 88 X 104 h 120 x

 9 ht 25 em 41) 57 9 73 I 89 Y 105 i 121 y

10 nl 26 sub 42 * 58 : 74 J 90 Z 106 j 122 z

11 vt 27 esc 43 + 59 ; 75 K 91 [107 k 123 {

12 np 28 fs 44 , 60 < 76 L 92 \ 108 l 124 |

13 cr 29 gs 45 - 61 = 77 M 93] 109 m 125 }

14 so 30 rs 46 . 62 > 78 N 94 ^ 110 n 126 ~

15 si 31 us 47 / 63 ? 79 O 95 _ 111 o 127 del

The characters between 0 and 31 are generally not printable (control characters, etc). 32 is the space character.

Also note that there are only 128 ASCII characters. This means only 7 bits are required to represent an ASCII character. However, since the smallest size representation on most computers is a byte, a byte is used to store an ASCII character. The MSb of an ASCII character is 0. Sometimes ASCII has been extended by using the MSb.

ASCII Code (Hex)

This chart can be found by typing man ascii.

00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p

01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q

02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r

03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s

04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t

05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u

06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v

07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w

08 bs 18 can 28 (38 8 48 H 58 X 68 h 78 x

09 ht 19 em 29) 39 9 49 I 59 Y 69 i 79 y

0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z

0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b {

0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |

0d cr 1d gs 2d - 3d = 4d M 5d] 6d m 7d }

0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~

0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del

The difference in the ASCII code between an uppercase letter and its corresponding lowercase letter is 2016. This makes it easy to convert lower to uppercase (and back) in hex (or binary).

Other Character Codes

While ASCII is still popularly used, another character representation that was used (especially at IBM) was EBCDIC, which stands for Extended Binary Coded Decimal Interchange Code (yes, the word "code" appears twice). This character set has mostly disappeared. EBCDIC does not store characters contiguously, so this can create problems alphabetizing "words".

One problem with ASCII is that it's biased to the English language. This generally creates some problems. One common solution is for people in other countries to write programs in ASCII.

Other countries have used different solutions, in particular, using 8 bits to represent their alphabets, giving up to 256 letters, which is plenty for most alphabet based languages (recall you also need to represent digits, punctuation, etc).

However, Asian languages, which are word-based, rather than character-based, often have more words than 8 bits can represent. In particular, 8 bits can only represent 256 words, which is far smaller than the number of words in natural languages.

Thus, a new character set called Unicode is now becoming more prevalent. This is a 16 bit code, which allows for about 65,000 different representations. This is enough to encode the popular Asian languages (Chinese, Korean, Japanese, etc.). It also turns out that ASCII codes are preserved. What does this mean? To convert ASCII to Unicode, take all one byte ASCII codes, and zero-extend them to 16 bits. That should be the Unicode version of the ASCII characters.

The biggest consequence of using Unicode from ASCII is that text files double in size. The second consequence is that endianness begins to matter again. With single bytes, there's no need to worry about endianness. However, you have to consider that with two byte quantities.

While C and C++ still primarily use ASCII, Java has already used Unicode. This means that Java must create a byte type, because char in Java is no longer a single byte. Instead, it's a 2 byte Unicode representation.

ASCII files

It's easy to fool yourself into thinking that numbers written in a file are actually the internal representation. For example, if you write 123 in a file using a text editor, is that really how the integer 123 is stored?

The file does NOT storing 123. Instead, it stores the ASCII code for the character '1', '2', and '3' (which is 31, 32, 33 in hex or 0011 0001, 0011 0010, 0011 0011 in binary).

ASCII files store bytes. Each byte is the ASCII code for some character in the character set. You can think of a text editor as a translator. It translates those binary numbers into symbols on the screen. Thus, when it sees 4116, that's the ASCII code for 'A', and thus 'A' gets displayed.

Some people think that if they type 0's and 1's in a text editor, they are writing out bits into a binary file. This is not true. The file contains the ASCII code for the character '0' and the character '1'.

There are hex editors which allow you to either type in binary or more commonly in hex. Those hex pairs are translated to binary. Thus, when you write F3, the binary number 1111 0011 is written to the file (the space is placed there only to make the binary number easy to read).

Summary

Character data is at least as important as numeric data. Like numeric data, character data is represented using 0's and 1's. The most commonly used character representation (at least, in the US) is ASCII. However, Unicode is gaining popularity, and should eventually become the standard character set in programming languages.

The Von Neumann Model

Conventional digital computers have a common form that is attributed to Von Neumann, although historians agree that the entire team was responsible for the design. The Von Neumann model consists of five major components as illustrated

in Figure 1-2. The Input Unit provides instructions and data to the system, which are subsequently stored in the Memory Unit

[image: image3.emf]
Figure 1-2 The von Neumann model of a digital computer. Thick arrows represent data paths. Thin

arrows represent control paths.

The instructions and data are processed by the Arithmetic and Logic Unit (ALU) under the direction of the Control Unit. The results are sent to the Output Unit. The ALU and control unit are frequently referred to collectively as the central processing unit (CPU) . Most commercial computers can be decomposed into these five basic units.

The stored program is the most important aspect of the von Neumann model. A program is stored in the computer’s memory along with the data to be processed. Although we now take this for granted, prior to the development of the stored program computer programs were stored on external media, such as plugboards (mentioned earlier) or punched cards or tape. In the stored program computer the program can be manipulated as if it is data. This gave rise to compilers and operating systems, and makes possible the great versatility of the modern computer.

The System Bus Model

Although the von Neumann model prevails in modern computers, it has been streamlined. Figure 1-3 shows the system bus model of a computer system. This model partitions a computer system into three subunits: CPU, Memory, and Input/Output (I/O). This refinement of the von Neumann model combines the ALU and the control unit into one functional unit, the CPU. The input and output units are also combined into a single I/O unit.

Most important to the system bus model, the communications among the components are by means of a shared pathway called the system bus, which is made up of the data bus (which carries the information being transmitted), the address bus (which identifies where the information is being sent), and the control bus (which describes aspects of how the information is being sent, and in what manner). There is also a power bus for electrical power to the components, which is not shown, but its presence is understood. Some architectures may also have a separate I/O bus.

[image: image4.emf]
Figure. The system bus model of a computer system.

Physically, busses are made up of collections of wires that are grouped by function.

A 32-bit data bus has 32 individual wires, each of which carries one bit of data (as opposed to address or control information). In this sense, the system bus is actually a group of individual busses classified by their function.

The data bus moves data among the system components. Some systems have separate data buses for moving information to and from the CPU, in which case there is a data-in bus and a data-out bus. More often a single data bus moves data in either direction, although never both directions at the same time.

If the bus is to be shared among communicating entities, then the entities must have distinguished identities: addresses. In some computers all addresses are assumed to be memory addresses whether they are in fact part of the computer’s memory, or are actually I/O devices, while in others I/O devices have separate I/O addresses. memory address, or location, identifies a memory location where data is stored, similar to the way a postal address identifies the location where a recipient receives and sends mail. During a memory read or write operation the address bus contains the address of the memory location where the data is to be read from or written to. Note that the terms “read” and “write” are with respect to the CPU: the CPU reads data from memory and writes data into memory. If data is to be read from memory then the data bus contains the value read from that address in memory. If the data is to be written into memory then the data bus contains the data value to be written into memory.

The control bus is somewhat more complex, and we defer discussion of this bus to later chapters. For now the control bus can be thought of as coordinating access to the data bus and to the address bus, and directing data to specific components.

Central Processing Unit

Now that we are familiar with the basic components of the system bus and memory, we are ready to explore the internals of the CPU. At a minimum, the CPU consists of a data section that contains registers and an ALU, and a control section, which interprets instructions and effects register transfers, as illustrated in Figure below. The data section is also referred to as the datapath.

[image: image5.emf]
Fig. High level view of the CPU

The control unit of a computer is responsible for executing the program instructions, which are stored in the main memory.

There are two registers that form the interface between the control unit and the data unit, known as the program counter (PC) and the instruction register (IR). The PC contains the address of the instruction being executed (In Intel processors the program counter is called the instruction pointer, IP.

). The instruction that is pointed to by the PC is fetched from the memory, and is stored in the IR where it is interpreted. The steps that the control unit carries out in executing a program are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory, if any.

4) Execute the instruction and store results.

5) Go to step 1.

This is known as the fetch-execute cycle which will be discussed later
The control unit is responsible for coordinating these different units in the execution of a computer program. It can be thought of as a form of a “computer within a computer” in the sense that it makes decisions as to how the rest of the machine behaves.

Datapath

A datapath is a collection of functional units such as ALUs or multipliers that perform data processing operations. The datapath is made up of a collection of registers known as the register file and the arithmetic and logic unit (ALU)

The register file can be thought of as a small, fast memory, separate from the system memory, which is used for temporary storage during computation. Typical sizes for a register file range from a few to a few thousand registers. Like the system memory, each register in the register file is assigned an address in sequence starting from zero. These register “addresses” are much smaller than main memory addresses: a register file containing 32 registers would have only a 5-bit address, for example. The major differences between the register file and the system memory is that the register file is contained within the CPU, and is therefore much faster. An instruction that operates on data from the register file can often run ten times faster than the same instruction that operates on data in memory. For this reason, register-intensive programs are faster than the equivalent memory intensive programs, even if it takes more register operations to do the same tasks that would require fewer operations with the operands located in memory.

[image: image6.emf]
Fig. An example of datapath

Notice that there are several busses inside the datapath. Form the example above, three busses connect the datapath to the system bus. This allows data to be transferred to and from main memory and the register file. Three additional busses connect the register file to the ALU. These busses allow two operands to be fetched from the register file simultaneously, which are operated on by the ALU, with the results returned to the register file.

The ALU implements a variety of binary (two-operand) and unary (one-operand) operations. Examples include add, and, not, or, and multiply. Operations and operands to be used during the operations are selected by the Control Unit.

The two source operands are fetched from the register file onto busses labelled “Register Source 1 (rs1)” and “Register Source 2 (rs2).” The output from the ALU is placed on the bus labelled “Register Destination (rd),” where the results are conveyed back to the register file. In most systems these connections also include a path to the System Bus so that memory and devices can be accessed.

This is shown as the three connections labelled “From Data Bus”, “To Data Bus”, and “To Address Bus.”

Fetch-Decode-Execute Cycle

Computer Function

The basic function of a computer is program execution. When a program is run the executable binary file is copied from the disk drive into memory. The process of program execution is the retrieval of instructions and data from memory, and the execution of the various operations. Program execution stops only when the computer is switched off; while the machine is on, the cycle is continuous! (an infinite loop). Program execution is performed by Control Unit (CU) of the CPU. The task of the Control Unit is the instruction cycle (sometimes called the fetch-decode-execute cycle, or just the fetch-execute cycle)

· The control unit is also in charge of coordinating the activities inside the CPU and the interaction with the outside. It is doing this by issuing in each clock cycle the appropriate control signals.

· A set of control signals activates the micro-operations which have to be executed in a given control step.

The instruction cycle consists of the tasks: the fetch cycle, the decode cycle, the execute cycle, and the interrupt cycle

· The sequence of actions of the instruction cycle can be seen in the following diagram:

[image: image7.jpg]
Micro-Operations

· The lowest level atomic operations that a computer performs are micro operations

· At each stage during the instruction cycle, a series of micro operations are performed

· For example, the execution cycle has various different sets of micro operations to perform the various arithmetic and logic operations

The Fetch Cycle

· The first phase of the instruction cycle

· Special purpose CPU registers are involved:

· MAR: the Memory Address Register specifies the address in memory for a read or write operation

· MDR: the Memory Data Register (or MBR: the Memory Buffer Register) is used to contain the value to be stored in memory or the last value read from memory

· PC: the Program Counter holds the address of the next instruction to be fetched

· IR: the Instruction Register is used to contain the the opcode of the last instruction

· The sequence of micro code actions of the Fetch cycle are:

0. Move the contents of PC into MAR

1. Move the contents of the memory address given by the value of MAR, and store the data in MDR

2. Increment the value of PC

3. Move the contents of MDR into IR

1. Special note: it is possible that some op code may be stored in more than a single memory address (thus requiring several fetches...)

The Decode (Indirect) Cycle

· The fetch cycle is responsible for setting up the instructions - next, the operands of the instruction must be fetched from memory

· The process can be quiet involved, as an instruction may have several operands spanning several memory cells

· Basically this step involves converting "indirect" addresses (like variables) to "direct" addresses specifying the exact location in memory at which to find the data

· In short, the actions of the Indirect cycle are:

· For each of the operands which need to be decoded:

· Perform a series of memory reads (in the style of the fetch cycle)

· Replace the indirect addresses with direct addresses

The Execute Cycle

· For each op code, a particular sequence of micro operations are performed (the sequence will be different for each op code)

· The micro code for a particular instruction could be rather complex.

The Interrupt Cycle

· After the execute cycle is completed, a test is made to determine if an interrupt was enabled (e.g. so that another process can access the CPU)

· if not, instruction cycle returns to the fetch cycle

· if so, the interrupt cycle might performs the following tasks: (simplified...)

· Copy the current value of PC into MDR

· Copy SP into MAR

· Copy the interrupt-routine-address into PC

· Copy the contents of the address in MDR into indicated Stack memory cell

· Continue the instruction cycle within the interrupt routine

· After the interrupt routine finishes, the PC-save-address is used to reset the value of PC and program execution can continue

Register transfer language (RTL)

By using the register transfer language, we can describe how the CPU works. One or more letters, or letters followed by numerals denote registers or storage locations. Square bracket denote the content of the registers they enclose, and the left arrow indicates the transfer of the content of a register. The left hand side of an equations denotes the result of the action defined on the right hand side.
[MAR]([PC] denote that the content of the program counter is transferred into the memory address register, MAR
[PC]([PC]+1 denote that the content of the program counter is incremented by 1

The computer’s memory is refered to as main store, MS and the content of memory location x is written as [MS(x)]. For example, suppose we are executing an instruction that store the content of the Program counter in memory location 20 , we can represent it as follow: [MS(20)] ([PC]

[MBR] ([MS([MAR])] denote that the content of the main store whose address is given by the content of the MAR is transferred to the memory buffer register, MBR
[IR] ([MBR]the content of MBR is moved to the instruction register, IR

CU([IR(op-code)] the op-code is transferred from the IR to the control unit.

For the execution cycle, assuming and addidion operation is being performed, the execute cycle continue as follow

[MAR]([IR(address)] denote that operand address is move from the IR to the MAR

 [MBR] ([MS([MAR])] denote that the data is read from the main store whose address is given by the content of the MAR is transferred to the memory buffer register, MBR

ALU ([MBR], ALU([DO] addition is been performed using the data register and the ALU
[DO] (ALU move the output of ALU to data register

Control unit design

A control unit in general is a central (or sometimes distributed but clearly distinguishable) part of whatsoever machinery that controls its operation, provided that a piece of machinery is complex and organized enough to contain any such unit. One domain in which the term is specifically used is the area of computer design.

In computers, the control unit was historically defined as one distinct part of the 1946 reference model of Von_Neumann_architecture. In modern computer designs, the control unit is typically an internal part of the CPU with its overall role and operation unchanged. The outputs of the control unit control the activity of the rest of the device. The control unit is the circuitry that controls the flow of data through the processor, and coordinates the activities of the other units within it. In a way, it is the "brain within the brain", as it controls what happens inside the processor, which in turn controls the rest of the PC.

hardwired control unit

To execute instructions, a computer's processor must generate the control signals used to perform the processor's actions in the proper sequence. This sequence of actions can either be executed by another processor's software (for example in software emulation or simulation of a processor) or in hardware. Hardware methods fall into two categories: the processor's hardware signals are generated either by hardwired control, in which the instruction bits directly generate the signals, or by microprogrammed control in which a dedicated microcontroller executes a microprogram to generate the signals.

In practice, processor control units are often so complex that no one design method by itself can yield a satisfactory circuit at an acceptable cost. The most acceptable design may consist of several linked, but independently designed, sequential circuits.

[image: image8.png]
fig. hardwired control unit design

Microprogramming made it possible to re-wire, as it were, a computer by simply downloading a new microprogram to it. This required dedicated hardware or an external processor

micro programmed control unit

Microprogramming (i.e. writing microcode) is a method that can be employed to implement machine instructions in a CPU relatively easily, often using less hardware than with other methods. It is a set of very detailed and rudimentary lowest-level routines which controls and sequences the actions needed to execute (perform) particular instructions, sometimes also to decode (interpret) them. A machine instruction implemented by a series of microinstructions is thus loosely comparable to how an interpreter implements a high-level language statement using a series of machine instructions.

The microcode is normally written by the CPU engineer during the design phase. It is generally not meant to be visible or changeable by a normal programmer, not even an assembly programmer, one of the reasons being that microcode (by design) can be dramatically changed with a new microarchitecture generation. Machine code often retains backwards compatibility. Microcode has often been used to let one microarchitecture emulate another, usually more powerful, architecture.

Some hardware vendors, especially IBM, also use the term microcode as a synonym for firmware, whether or not it actually implements the microprogramming of a processor. Even simple firmware, such as the one used in a hard drive, is sometimes described as microcode.

The elements composing a microprogram exist on a lower conceptual level than a normal application program. Each element is differentiated by the "micro" prefix to avoid confusion: microinstruction, microassembler, microprogrammer, microarchitecture, etc.

The microcode usually does not reside in the main memory, but in a special high speed memory, called the control store. It might be either read-only or read-write memory. In the latter case the microcode would be loaded into the control store from some other storage medium as part of the initialization of the CPU, and it could be altered to correct bugs in the instruction set, or to implement new machine instructions.

Microprograms consist of series of microinstructions. These microinstructions control the CPU at a very fundamental level of hardware circuitry. For example, a single typical microinstruction might specify the following operations:

· Connect Register 1 to the "A" side of the ALU
· Connect Register 7 to the "B" side of the ALU

· Set the ALU to perform two's-complement addition

· Set the ALU's carry input to zero

· Store the result value in Register 8

· Update the "condition codes" with the ALU status flags ("Negative", "Zero", "Overflow", and "Carry")

· Microjump to MicroPC nnn for the next microinstruction

To simultaneously control all processor's features in one cycle, the microinstruction is often as wide as 50 or more bits. Microprograms are carefully designed and optimized for the fastest possible execution, since a slow microprogram would yield a slow machine instruction which would in turn cause all programs using that instruction to be slow.

Microcode was originally developed as a simpler method of developing the control logic for a computer. Initially CPU instruction sets were "hard wired". Each step needed to fetch, decode and execute the machine instructions (including any operand address calculations, reads and writes) was controlled directly by combinatorial logic and rather minimal sequential state machine circuitry. While very efficient, the need for powerful instruction sets with multi-step addressing and complex operations made such "hard-wired" processors difficult to design and debug; highly encoded and varied-length instructions can contribute to this as well, especially when very irregular encodings are used.

Microcode simplified the job by allowing much of the processor's behaviour and programming model be defined via microprogram routines rather than by dedicated circuitry. Even late in the design process, microcode could easily be changed, whereas hard wired CPU designs were very cumbersome to change, so this greatly facilitated CPU design.

Architectures with instruction sets implemented by complex microprograms included the IBM System/360 and Digital Equipment Corporation VAX. The approach of increasingly complex microcode-implemented instruction sets was later called CISC. A middle way, used in many microprocessors, is to use PLAs and/or ROMs (instead of combinatorial logic) mainly for instruction decoding, and let a simple state machine (without much, or any, microcode) do most of the sequencing. The various practical uses of microcode and related techniques (such as PLAs) have been numerous over the years, as well as approaches to where, and to which extent, it should be used. It is still used in modern CPU designs.

A processor's microprograms operate on a more primitive, totally different and much more hardware-oriented architecture than the assembly instructions visible to normal programmers. In coordination with the hardware, the microcode implements the programmer-visible architecture. The underlying hardware need not have a fixed relationship to the visible architecture. This makes it possible to implement a given instruction set architecture on a wide variety of underlying hardware micro-architectures.

Doing so is important if binary program compatibility is a priority. That way previously existing programs can run on totally new hardware without requiring revision and recompilation. However there may be a performance penalty for this approach. The tradeoffs between application backward compatibility vs CPU performance are hotly debated by CPU design engineers.

Microprogramming also reduced the cost of field changes to correct defects (bugs) in the processor; a bug could often be fixed by replacing a portion of the microprogram rather than by changes being made to hardware logic and wiring.

Instruction set
An instruction set is a list of all the instructions, and all their variations, that a processor can execute.

Instructions include:

· Arithmetic such as add and subtract

· Logic instructions such as and, or, and not

· Data instructions such as move, input, output, load, and store

· Control flow instructions such as goto, if ... goto, call, and return.

An instruction set, or instruction set architecture (ISA), is the part of the computer architecture related to programming, including the native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception handling, and external I/O. An ISA includes a specification of the set of opcodes (machine language), the native commands implemented by a particular CPU design.

Instruction set architecture is distinguished from the microarchitecture, which is the set of processor design techniques used to implement the instruction set. Computers with different microarchitectures can share a common instruction set. For example, the Intel Pentium and the AMD Athlon implement nearly identical versions of the x86 instruction set, but have radically different internal designs.

Machine language is built up from discrete statements or instructions. Depending on the processing architecture, a given instruction may specify:
· Particular registers for arithmetic, addressing, or control functions

· Particular memory locations or offsets

· Particular addressing modes used to interpret the operands

More complex operations are built up by combining these simple instructions, which (in a von Neumann machine) are executed sequentially, or as otherwise directed by control flow instructions.

Some operations available in most instruction sets include:

· moving

· set a register (a temporary "scratchpad" location in the CPU itself) to a fixed constant value

· move data from a memory location to a register, or vice versa. This is done to obtain the data to perform a computation on it later, or to store the result of a computation.

· read and write data from hardware devices

· computing

· add, subtract, multiply, or divide the values of two registers, placing the result in a register

· perform bitwise operations, taking the conjunction/disjunction (and/or) of corresponding bits in a pair of registers, or the negation (not) of each bit in a register

· compare two values in registers (for example, to see if one is less, or if they are equal)

· affecting program flow

· jump to another location in the program and execute instructions there

· jump to another location if a certain condition holds

· jump to another location, but save the location of the next instruction as a point to return to (a call)

Some computers include "complex" instructions in their instruction set. A single "complex" instruction does something that may take many instructions on other computers. Such instructions are typified by instructions that take multiple steps, control multiple functional units, or otherwise appear on a larger scale than the bulk of simple instructions implemented by the given processor. Some examples of "complex" instructions include:

· saving many registers on the stack at once

· moving large blocks of memory

· complex and/or floating-point arithmetic (sine, cosine, square root, etc.)

· performing an atomic test-and-set instruction

· instructions that combine ALU with an operand from memory rather than a register

A complex instruction type that has become particularly popular recently is the SIMD or Single-Instruction Stream Multiple-Data Stream operation or vector instruction, an operation that performs the same arithmetic operation on multiple pieces of data at the same time. SIMD have the ability of manipulating large vectors and matrices in minimal time. SIMD instructions allow easy parallelization of algorithms commonly involved in sound, image, and video processing. Various SIMD implementations have been brought to market under trade names such as MMX, 3DNow! and AltiVec.

The design of instruction sets is a complex issue. There were two stages in history for the microprocessor. One using CISC or complex instruction set computer where many instructions were implemented. In the 1970s places like IBM did research and found that many instructions were used that could be eliminated. The result was the RISC, reduced instruction set computer, architecture which uses a smaller set of instructions. A simpler instruction set may offer the potential for higher speeds, reduced processor size, and reduced power consumption; a more complex one may optimize common operations, improve memory/cache efficiency, or simplify programming.

Instruction format

Instruction sets may be categorized by the number of operands (registers, memory locations, or immediate values) in their most complex instructions. This does not refer to the arity of the operators, but to the number of operands explicitly specified as part of the instruction. Thus, implicit operands stored in a special-purpose register or on top of the stack are not counted.

(In the examples that follow, a, b, and c refer to memory addresses, and reg1 and so on refer to machine registers.)

· 0-operand ("zero address format") -- these are also called stack machines, and all operations take place using the top one or two positions on the stack. Add two numbers in five instructions: #a, load, #b, load, add, #c, store;

· 1-operand ("one address format") -- often called accumulator machines -- include most early computers. Each instruction performs its operation using a single operand specifier. The single accumulator register is implicit -- source, destination, or often both -- in almost every instruction: load a, add b, store c;

· 2-operand ("two address format")-- many RISC machines fall into this category, though many CISC machines also fall here as well. For a RISC machine (requiring explicit memory loads), the instructions would be: load a, reg1; load b, reg2; add reg1,reg2; store reg2,c;

· 3-operand CISC ("three address format") -- some CISC machines fall into this category. The above example here might be performed in a single instruction in a machine with memory operands: add a, b,c, or more typically (most machines permit a maximum of two memory operations even in three-operand instructions): move a, reg1; add reg1,b, c;

· 3-operand RISC -- most RISC machines fall into this category, because it allows "better reuse of data". In a typical three-operand RISC machines, all three operands must be registers, so explicit load/store instructions are needed. An instruction set with 32 registers requires 15 bits to encode three register operands, so this scheme is typically limited to instructions sets with 32-bit instructions or longer. Example: load a, reg1; load b, reg2; add reg1+reg2->reg3; store reg3,c;

· more operands -- some CISC machines permit a variety of addressing modes that allow more than 3 operands (registers or memory accesses), such as the VAX "POLY" polynomial evaluation instruction.

Special-Purpose Registers

In addition to the general-purpose registers and the accumulator, most modern architectures include other registers that are dedicated to specific purposes(which are described in further). Examples include

• Memory index registers: The Intel 80x86 Source Index (SI) and Destination

Index (DI) registers. These are used to point to the beginning or end of an array in memory. Special “string” instructions transfer a byte or a word from the starting memory location pointed to by SI to the ending memory location pointed to by DI, and then increment or decrement these registers to point to the next byte or word.

• Floating point registers: Many current-generation processors have special registers and instructions that handle floating point numbers.

• Registers to support time, and timing operations: The PowerPC 601 processor has Real-Time Clock registers that provide a high-resolution measure of real time for indicating the date and the time of day. They provide a range of approximately 135 years, with a resolution of 128 ns.

• Registers in support of the operating system: most modern processors have registers to support the memory system.

• Registers that can be accessed only by “privileged instructions,” or when in “Supervisor mode.” In order to prevent accidental or malicious damage to the system, many processors have special instructions and registers that are unavailable to the ordinary user and application program. These instructions and registers are used only by the operating system.

Addressing mode

 An "addressing mode" refers to how a given memory location is addressed. In summary, the addressing modes are as follows, with an example of each:

	Immediate Addressing
	MOV A,#20h

	Direct Addressing
	MOV A,30h

	Indirect Addressing
	MOV A,@R0

	External Direct
	MOVX A,@DPTR

	Code Indirect
	MOVC A,@A+DPTR

Each of these addressing modes provides important flexibility.

Immediate Addressing

Immediate addressing is so-named because the value to be stored in memory immediately follows the operation code in memory. That is to say, the instruction itself dictates what value will be stored in memory.

For example, the instruction:

MOV A,#20h

This instruction uses Immediate Addressing because the Accumulator will be loaded with the value that immediately follows; in this case 20 (hexadecimal).

Immediate addressing is very fast since the value to be loaded is included in the instruction. However, since the value to be loaded is fixed at compile-time it is not very flexible.

Direct Addressing

Direct addressing is so-named because the value to be stored in memory is obtained by directly retrieving it from another memory location. For example:

MOV A,30h

This instruction will read the data out of Internal RAM address 30 (hexadecimal) and store it in the Accumulator.

Direct addressing is generally fast since, although the value to be loaded isn’t included in the instruction, it is quickly accessible since it is stored in the 8051s Internal RAM. It is also much more flexible than Immediate Addressing since the value to be loaded is whatever is found at the given address--which may be variable.

Also, it is important to note that when using direct addressing any instruction which refers to an address between 00h and 7Fh is referring to Internal Memory. Any instruction which refers to an address between 80h and FFh is referring to the SFR control registers that control the 8051 microcontroller itself.

The obvious question that may arise is, "If direct addressing an address from 80h through FFh refers to SFRs, how can I access the upper 128 bytes of Internal RAM that are available on the 8052?" The answer is: You can’t access them using direct addressing. As stated, if you directly refer to an address of 80h through FFh you will be referring to an SFR. However, you may access the 8052s upper 128 bytes of RAM by using the next addressing mode, "indirect addressing."

Indirect Addressing

Indirect addressing is a very powerful addressing mode which in many cases provides an exceptional level of flexibility. Indirect addressing is also the only way to access the extra 128 bytes of Internal RAM found on an 8052.

Indirect addressing appears as follows:

MOV A,@R0

This instruction causes the 8051 to analyze the value of the R0 register. The 8051 will then load the accumulator with the value from Internal RAM which is found at the address indicated by R0.

For example, lets say R0 holds the value 40h and Internal RAM address 40h holds the value 67h. When the above instruction is executed the 8051 will check the value of R0. Since R0 holds 40h the 8051 will get the value out of Internal RAM address 40h (which holds 67h) and store it in the Accumulator. Thus, the Accumulator ends up holding 67h.

Indirect addressing always refers to Internal RAM; it never refers to an SFR. Thus, in a prior example we mentioned that SFR 99h can be used to write a value to the serial port. Thus one may think that the following would be a valid solution to write the value 1 to the serial port:

MOV R0,#99h ;Load the address of the serial port
MOV @R0,#01h ;Send 01 to the serial port -- WRONG!!

This is not valid. Since indirect addressing always refers to Internal RAM these two instructions would write the value 01h to Internal RAM address 99h on an 8052. On an 8051 these two instructions would produce an undefined result since the 8051 only has 128 bytes of Internal RAM.

External Direct

External Memory is accessed using a suite of instructions which use what I call "External Direct" addressing. I call it this because it appears to be direct addressing, but it is used to access external memory rather than internal memory.

There are only two commands that use External Direct addressing mode:

MOVX A,@DPTR
MOVX @DPTR,A

As you can see, both commands utilize DPTR. In these instructions, DPTR must first be loaded with the address of external memory that you wish to read or write. Once DPTR holds the correct external memory address, the first command will move the contents of that external memory address into the Accumulator. The second command will do the opposite: it will allow you to write the value of the Accumulator to the external memory address pointed to by DPTR.

External Indirect

External memory can also be accessed using a form of indirect addressing which I call External Indirect addressing. This form of addressing is usually only used in relatively small projects that have a very small amount of external RAM. An example of this addressing mode is:

MOVX @R0,A

Once again, the value of R0 is first read and the value of the Accumulator is written to that address in External RAM. Since the value of @R0 can only be 00h through FFh the project would effectively be limited to 256 bytes of External RAM. There are relatively simple hardware/software tricks that can be implemented to access more than 256 bytes of memory using External Indirect addressing; however, it is usually easier to use External Direct addressing if your project has more than 256 bytes of External RAM.

Assembly Program creation process

For the creation of a program it is necessary to follow five steps:

Design of the algorithm, stage the problem to be solved is established and the best solution is proposed, creating systematic diagrams used for the better solution proposal. Coding the algorithm, consists in writing the program in some programming language; assembly language in this specific case, taking as a base the proposed solution on the prior step. Translation to machine language, is the creation of the object program, in other words, the written program as a sequence of zeros and ones that can be interpreted by the processor. Test the program, after the translation the program into machine language, execute the program in the computer machine. The last stage is the elimination of detected faults on the program on the test stage. The correction of a fault normally requires the repetition of all the steps from the first or second.

CPU Registers

The CPU has 4 internal registers, each one of 16 bits. The first four, AX, BX, CX, and DX are general use registers and can also be used as 8 bit registers, if used in such a way it is necessary to refer to them for example as: AH and AL, which are the high and low bytes of the AX register. This nomenclature is also applicable to the BX, CX, and DX registers.

The registers known by their specific names:

AX Accumulator
BX Base register
CX Counting register
DX Data register
DS Data segment register
ES Extra segment register
SS Battery segment register
CS Code segment register
BP Base pointers register
SI Source index register
DI Destiny index register
SP Battery pointer register
IP Next instruction pointer register
F Flag register

The Debugger program

To create a program in assembler two options exist, the first one is to use nay assembler such as (the TASM or Turbo Assembler of Borland) and the second one is to use the debugger. On this first section we will use this last one since it is found in any PC with the MS-DOS, which makes it available to any user who has access to a machine with these characteristics. Debug can only create files with a .COM extension, and because of the characteristics of these kinds of programs they cannot be larger that 64 kb, and they also must start with displacement, offset, or 0100H memory direction inside the specific segment.

Debug provides a set of commands that lets you perform a number of useful operations:

A Assemble symbolic instructions into machine code
D Display the contents of an area of memory
E Enter data into memory, beginning at a specific location
G Run the executable program in memory
N Name a program
P Proceed, or execute a set of related instructions
Q Quit the debug program
R Display the contents of one or more registers
T Trace the contents of one instruction
U Unassembled machine code into symbolic code
W Write a program onto disk

It is possible to visualize the values of the internal registers of the CPU using the Debug program. To begin working with Debug, type the following prompt in your computer:

C:/>Debug [Enter]

On the next line a dash will appear, this is the indicator of Debug, at this moment the instructions of Debug can be introduced using the following command:

-r[Enter]

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0D62 ES=0D62 SS=0D62 CS=0D62 IP=0100 NV EI PL NZ NA PO NC
0D62:0100 2E CS:
0D62:0101 803ED3DF00 CMP BYTE PTR [DFD3],00 CS:DFD3=03

All the contents of the internal registers of the CPU are displayed; an
alternative of viewing them is to use the "r" command using as a parameter
the name of the register whose value wants to be seen. For example:

-rbx
BX 0000
:

This instruction will only display the content of the BX register and the Debug indicator changes from "-" to ":"

When the prompt is like this, it is possible to change the value of the register which was seen by typing the new value and [Enter], or the old value can be left by pressing [Enter] without typing any other value.

Assembler structure

In assembly language code lines have two parts, the first one is the name of the instruction which is to be executed, and the second one are the parameters of the command. For example: add ah bh

Here "add" is the command to be executed, in this case an addition, and "ah" as well as "bh" are the parameters.

For example: mov al, 25

In the above example, we are using the instruction mov, it means move the value 25 to al register.

The name of the instructions in this language is made of two, three or four letters. These instructions are also called mnemonic names or operation codes, since they represent a function the processor will perform.

Sometimes instructions are used as follows:

add al,[170]

The brackets in the second parameter indicate to us that we are going to work with the content of the memory cell number 170 and not with the 170 value, this is known as direct addressing.

Creating basic assembler program

The first step is to initiate the Debug, this step only consists of typing debug[Enter] on the operative system prompt.

To assemble a program on the Debug, the "a" (assemble) command is used; when this command is used, the address where you want the assembling to begin can be given as a parameter, if the parameter is omitted the assembling will be initiated at the locality specified by CS:IP, usually 0100h, which is the locality where programs with .COM extension must be initiated. And it will be the place we will use since only Debug can create this specific type of programs.

Even though at this moment it is not necessary to give the "a" command a parameter, it is recommendable to do so to avoid problems once the CS:IP registers are used, therefore we type:

a 100[enter]
mov ax,0002[enter]
mov bx,0004[enter]
add ax,bx[enter]
nop[enter][enter]

What does the program do?, move the value 0002 to the ax register, move the value 0004 to the bx register, add the contents of the ax and bx registers, the instruction, no operation, to finish the program.

In the debug program. After to do this, appear on the screen some like the follow lines:

C:\>debug
-a 100
0D62:0100 mov ax,0002
0D62:0103 mov bx,0004
0D62:0106 add ax,bx
0D62:0108 nop
0D62:0109

Type the command "t" (trace), to execute each instruction of this program,
example:

-t

AX=0002 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0D62 ES=0D62 SS=0D62 CS=0D62 IP=0103 NV EI PL NZ NA PO NC
0D62:0103 BB0400 MOV BX,0004

You see that the value 2 move to AX register. Type the command "t" (trace),
again, and you see the second instruction is executed.

-t

AX=0002 BX=0004 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0D62 ES=0D62 SS=0D62 CS=0D62 IP=0106 NV EI PL NZ NA PO NC
0D62:0106 01D8 ADD AX,BX

Type the command "t" (trace) to see the instruction add is executed, you will see the follow lines:

-t

AX=0006 BX=0004 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0D62 ES=0D62 SS=0D62 CS=0D62 IP=0108 NV EI PL NZ NA PE NC
0D62:0108 90 NOP

The possibility that the registers contain different values exists, but AX and BX must be the same, since they are the ones we just modified.

To exit Debug use the "q" (quit) command.

Storing and loading the programs

It would not seem practical to type an entire program each time it is needed, and to avoid this it is possible to store a program on the disk, with the enormous advantage that by being already assembled it will not be necessary to run Debug again to execute it.

The steps to save a program that it is already stored on memory are:

Obtain the length of the program subtracting the final address from the initial address, naturally in hexadecimal system.
Give the program a name and extension. Put the length of the program on the CX register. Order Debug to write the program on the disk.

By using as an example the following program, we will have a clearer idea of how to take these steps:

When the program is finally assembled it would look like this:

0C1B:0100 mov ax,0002
0C1B:0103 mov bx,0004
0C1B:0106 add ax,bx
0C1B:0108 int 20
0C1B:010A

To obtain the length of a program the "h" command is used, since it will show us the addition and subtraction of two numbers in hexadecimal. To obtain the length of ours, we give it as parameters the value of our program's final address (10A), and the program's initial address (100). The first result the command shows us is the addition of the parameters and the
second is the subtraction.

-h 10a 100
020a 000a

The "n" command allows us to name the program.

-n test.com

The "rcx" command allows us to change the content of the CX register to the value we obtained from the size of the file with "h", in this case 000a, since the result of the subtraction of the final address from the initial address.

-rcx
CX 0000
:000a

Lastly, the "w" command writes our program on the disk, indicating how many bytes it wrote.

-w
Writing 000A bytes

To load an already saved file two steps are necessary:

Give the name of the file to be loaded.
Load it using the "l" (load) command.

To obtain the correct result of the following steps, it is necessary that the above program be already created.

Inside Debug we write the following:

-n test.com
-l
-u 100 109
0C3D:0100 B80200 MOV AX,0002
0C3D:0103 BB0400 MOV BX,0004
0C3D:0106 01D8 ADD AX,BX
0C3D:0108 CD20 INT 20

The last "u" command is used to verify that the program was loaded on memory. What it does is that it disassembles the code and shows it disassembled. The parameters indicate to Debug from where and to where to disassemble.

Debug always loads the programs on memory on the address 100H, otherwise indicated.

Building Assembler programs

SYNTAX OF 8086/8088 ASSEMBLY LANGUAGE

· The language is not case sensitive.

· There may be only one statement per line. A statement may start in any column.

· A statement is either an instruction, which the assembler translates into machine code, or an assembler directive (pseudo-op), which instructs the assembler to perform some specific task.

· Syntax of a statement:

{name} mnemonic {operand(s)} {; comment}

(a) The curly brackets indicate those items that are not present or are optional in some statements.

(b) The name field is used for instruction labels, procedure names, segment names, macro names, names of variables, and names of constants.

(c) MASM 6.1 accepts identifier names up to 247 characters long. All characters are significant, whereas under MASM 5.1, names are significant to 31 characters only. Names may consist of letters, digits, and the following 6 special characters: ? . @ _ $ % .If a period is used; it must be the first character. Names may not begin with a digit.

(d) Instruction mnemonics, directive mnemonics, register names, operator names and other words are reserved.

· Syntax of an instruction:

{label:} mnemonic {operand { , operand} } {; comment}

The curly brackets indicate those items that are not present or are optional in some instructions. Thus an instruction may have zero, one, or two operands.

· Operators:

The 8086/8088 Assembly language has a number of operators. An operator acts on an operand or operands to produce a value at assembly time. Examples are: + , - , *, / , DUP, and OFFSET

· Comments:

A semicolon starts a comment. A comment may follow a statement or it may be on a separate line. Multiple-line comments can be written by using the COMMENT directive. The syntax is:

COMMENT delimiter {comment}

comment

. . .
delimiter { comment }

where delimiter is any non-blank character not appearing in comment. The curly brackets indicate an item that is optional.

e.g.,

 COMMENT *

This program finds

the maximum element in a byte array

*

· Numbers:

(a) A binary number is suffixed by b or B.

e.g.,

11010111B

(b) A decimal number is suffixed by an optional d or D.

e.g.,

42d

-22D

3578

(c) A hexadecimal number must begin with a decimal digit and it is suffixed by h or H

e.g.,

20H

0bF2Ah

· Characters:

A character is enclosed in a pair of single quotes or in a pair of double quotes.

e.g.,

‘x’

“B”

· Strings:

A string is enclosed in a pair of single quotes or in a pair of double quotes.

e.g.,
 ‘ENTER YOUR NAME: ’

 “THE MAXIMUM VALUE IS ”

 ‘Omar shouted, “help !” ’

 “say, ‘hello’ ”

 “Omar’s books”

For a string delimited by single quotes, a pair of consecutive single quotes stands for a single quote.

e.g.,

‘Omar’ ’s books’

· Data definition
Each variable has a data type and is assigned a memory address by the program. The data-defining directives are:

	Directive
	Description of Initializers

	

	BYTE, DB (byte)
	Allocates unsigned numbers from 0 to 255.

	SBYTE (signed byte)
	Allocates signed numbers from –128 to +127.

	WORD, DW (word = 2 bytes)
	Allocates unsigned numbers from
0 to 65,535 (64K).

	SWORD (signed word)
	Allocates signed numbers from
–32,768 to +32,767.

	DWORD, DD (doubleword = 4 bytes),
	Allocates unsigned numbers from
0 to 4,294,967,295 (4 megabytes).

	SDWORD (signed doubleword)
	Allocates signed numbers from
–2,147,483,648 to +2,147,483,647.

e.g.,

ALPHA DB 4

VAR1 DB ?

ARRAY1 DB 40H, 35H, 60H, 30H

VAR2 DW 3AB4h

ARRAY2 DW 500, 456, 700, 400, 600

PROMPT DB ‘ENTER YOUR NAME $’

POINTER1 DD 6BA7000AH

A ? in place of an initializer indicates you do not require the assembler to initialize the variable. The assembler allocates the space but does not write in it. Use ? for buffer areas or variables your program will initialize at run time.

integer BYTE 16
negint SBYTE -16
expression WORD 4*3
signedexp SWORD 4*3
empty QWORD ? ; Allocate uninitialized long int
 BYTE 1,2,3,4,5,6 ; Initialize six unnamed bytes
long DWORD 4294967295

longnum SDWORD -2147433648

The DUP operator can be used to generate multiple bytes or words with known as well as un-initialized values.

e.g.,

table dw 100 DUP(0)

stars db 50 dup(‘*’)

ARRAY3 DB 30 DUP(?)

ARRAY4 DB 10 DUP(50), 45, 22, 20 DUP(60)

STRINGS DB 20H DUP(‘Dhahran’)

Note: If a variable name is missing in a data definition statement, memory is allocated; but no name is associated with that memory. For example:

DB 50 DUP(?)

allocates 50 un-initialized bytes; but no name is associated with those 50 bytes.

In MASM 6.1 and obove, a comma at the end of a data definition line (except in the comment field) implies that the line continues. For example, the following code is legal in MASM 6.1:

longstring BYTE "This string ",
 "continues over two lines."
bitmasks BYTE 80h, 40h, 20h, 10h,
 08h, 04h, 02h, 01h

· Named constants:

The EQU (equate) directive, whose syntax is:

name EQU constant_expression

assigns a name to a constant expression. Example:

MAX EQU 32767

MIN EQU MAX - 10

LF EQU 0AH

PROMPT EQU ‘TYPE YOUR NAME: $’

Note: (i) No memory is allocated for EQU names

 (ii) A name defined by EQU may not be redefined later in a program.

· The LABEL directive, whose syntax is:

name LABEL type

where type (for MASM Version 5.1 and lower versions) is BYTE, WORD, DWORD, QWORD, TBYTE, NEAR, or FAR provides a way to define or redefine the type associated with a variable or a label.

 Example1:

ARRAY1 LABEL WORD

ARRAY2 DB 100 DUP(0)

Here ARRAY1 defines a 50-word array, and ARRAY2 defines a 100-byte array. The same memory locations are assigned to both arrays. Thus the array can be accessed as either the byte array ARRAY1 or the word array ARRAY2.

Example2:

VAR3 LABEL DWORD

WORD1 LABEL WORD

BYTE1 DB ?

BYTE2 DB ?

WORD2 LABEL WORD

BYTE3 DB 50H

BYTE4 DB 66H

in this example, each of the words, and each of the bytes of the double word variable VAR3 can be accessed individually.

SEGMENT DEFINITION

An 8086/8088 assembly language program file must have the extension .asm

There are two types of 8086/8088 assembly language programs: exe-format and com-format.

An exe-format program generates executable files with extension .exe. A com-format program generates executable files with extension .com .
An exe-format program must contain a code segment and a stack segment. It may contain a data segment or an extra segment.

A com-format program contains only the code segment (the stack segment is explicit).
A programmer chooses an appropriate size for the stack segment, depending on the size of his program. Values in the range 100H to 400H are sufficient for most small programs.
Note: In a program, the data, code, and stack segments may appear in any order. However, to avoid forward references it is better to put the data segment before the code segment.
· SIMPLIFIED SEGMENT DIRECTIVES
MASM version 5.0 and above, and TASM provide a simplified set of directives for declaring segments called simplified segment directives. To use these directives, you must initialize a memory model, using the .MODEL directive, before declaring any segment. The format of the .MODEL directive is:
.MODEL memory-model
The memory-model may be TINY, SMALL, MEDIUM, COMPACT, LARGE, HUGE or FLAT :
	memory-model
	description

	TINY
	One segment. Thus code and data together may not be greater than 64K

	SMALL
	One code-segment. One data-segment. Thus neither code nor data may be greater than 64K

	MEDIUM
	More than one code-segment. One data-segment. Thus code may be greater than 64K

	COMPACT
	One code-segment. More than one data-segment. Thus data may be greater than 64K

	LARGE
	More than one code-segment. More than one data-segment. No array larger than 64K. Thus both code and data may be greater than 64K

	HUGE
	More than one code-segment. More than one data-segment. Arrays may be larger than 64K. Thus both code and data may be greater than 64K

	FLAT
	One segment up to 4GB. All data and code (including system resources) are in a single 32-bit segment.

All of the program models except TINY result in the creation of exe-format programs. The TINY model creates com-format programs.

	Memory Model
	Operating System
	Data and Code Combined

	Tiny
	MS-DOS
	Yes

	Small

	MS-DOS, Windows
	No

	Medium

	MS-DOS, Windows
	No

	Compact

	MS-DOS, Windows
	No

	Large

	MS-DOS, Windows
	No

	Huge

	MS-DOS, Windows
	No

	Flat

	Windows NT
	Yes

The simplified segment directives are: .CODE , .DATA , .STACK .

The .CODE directive may be followed by the name of the code segment.

The .STACK directive may be followed by the size of the stack segment, by default the size is 1K i.e., 1,024 bytes.

The definition of a segment extends from a simplified segment directive up to another simplified segment directive or up to the END directive if the defined segment is the last one.
· THE GENERAL STRUCTURE OF AN EXE-FORMAT PROGRAM

The memory map of a typical exe-format program, with segments defined in the order code, data, and stack is:

	
	(SP

	Stack segment

	(SS

	Data segment

	

	Code segment

	(CS , IP

	PSP (100H bytes)

	(DS , ES

	
	

The CS and IP registers are automatically initialized to point to the beginning of the code segment.

 The SS register is initialized to point to the beginning of the stack segment.

 The SP register is initialized to point one byte beyond the stack segment.

 The DS and ES registers are initialized to point to the beginning of the PSP (Program Segment Prefix) segment.

 This is a 100H (i.e., 256) byte segment that DOS automatically prefaces to a program when that program is loaded in memory.

 The PSP contains important information about the program.

 Thus if a program contains a data segment, the DS register must be initialized by the programmer to point to the beginning of that data segment.

 Similarly if a program contains an extra segment, the ES register must be initialized by the programmer to point to the beginning of that extra segment.

Initialization of DS

Note: The instructions which initialize the DS register for an exe-format program with simplified segment directives are:

MOV AX , @DATA

MOV DS , AX

where AX may be replaced by any other 16-bit general purpose register.

 At load time, @DATA is replaced with the 16-bit base address of the data segment.

 Thus @DATA evaluates to a constant value; such an operand is usually called an immediate operand.

 Since MOV instructions of the form:

MOV SegmentRegister , ImmediateOperand

are invalid, an initialization of the form:

MOV DS , @DATA

is invalid. Such an initialization is done indirectly using any 16-bit general-purpose register. Example:

MOV AX , @DATA

MOV DS , AX

Note: Every 8086 assembly language program must end with the END directive. This directive may be followed by an entry label, which informs the assembler the point where program execution is to begin. The entry label can have any valid name.

The general structure of an exe-format program is:

.MODEL SMALL

.STACK 200

.DATA

 ; data definitions using DB, DW, DD, etc. come here

 .CODE

START: MOV AX , @DATA

; Initialize DS

 MOV DS , AX

;

. . .

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

END START

Example:

.MODEL SMALL

.STACK 200

.DATA

 MESSAGE DB ‘ICS 232’ , ‘$’

.CODE

START: MOV AX , @DATA

; Initialize DS

 MOV DS , AX

;

 ; Display the string

 MOV AH , 09H

 MOV DX , OFFSET MESSAGE

 INT 21H

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

END START
THE GENERAL STRUCTURE OF A COM-FORMAT PROGRAM

The memory map of a typical com-format program is:

	
	(SP

	Stack area

	

	Code segment

(code and data)

	(IP

	PSP (100H bytes)

	(CS, DS , ES, SS

	
	

To work out the locations corresponding to symbols (labels and variables) in the source program, the assembler uses a variable called the location counter.

 Before assembly of each segment begins the location counter is set to zero. As each statement in that segment is scanned, the location counter is incremented by the number of bytes required by that statement.

Since the CS register is initialized to point to the beginning of the PSP when a com-format program is loaded in memory, the location counter must be set to 100H instead of the usual zero, so that: (i) the assembler assigns offset addresses relative to the beginning of the code segment and not the PSP, and (ii) the IP register is set to 100H when the program is loaded.

The location counter is set to 100H by the directive:

ORG 100H

Hence this directive must appear at the beginning of every com-format program before the program entry point.

Since a com-format program contains only one explicit segment i.e., the code segment, data, if any, must be defined within the code segment anywhere a data definition statement will not be treated as an executable statement.

 This can be done at the beginning of the code segment by jumping across data definitions using a JMP instruction.

The general structure of a com-format program is:

.MODEL TINY

.CODE

ORG 100H

ENTRY: JMP L1

; data definitions using DB, DW, DD, etc. come here

. . .

L1:

. . .

; Return to DOS

MOV AX , 4C00H

INT 21H

END ENTRY

Example:

.MODEL TINY

.CODE

 ORG 100H

ENTRY: JMP START

 MESSAGE DB ‘ICS 232’ , ‘$’

START:

 ; Display the string

 MOV AH , 09H

 MOV DX , OFFSET MESSAGE

 INT 21H

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

END ENTRY

Other Directives
.STARTUP
Generates program start-up code.

The .EXIT directive accepts a 1-byte exit code as its optional argument:

 .EXIT 1 ; Return exit code 1

.EXIT generates the following code that returns control to MS-DOS, thus terminating the program. The return value, which can be a constant, memory reference, or 1-byte register, goes into AL:

 mov al, value
 mov ah, 04Ch
 int 21h

If your program does not specify a return value, .EXIT returns whatever value happens to be in AL.

.586
Enables assembly of nonprivileged instructions for the Pentium processor.

.686
Enables assembly of nonprivileged instructions for the Pentium Pro processor.

The USE16, USE32, and FLAT Options
When working with an 80386 or later processor, MASM generates different code for 16 versus 32 bit segments. When writing code to execute in real mode under DOS, you must always use 16 bit segments. Thirty-two bit segments are only applicable to programs running in protected mode. Unfortunately, MASM often defaults to 32 bit mode whenever you select an 80386 or later processor using a directive like .386, .486, .586 or .686 in your program. If you want to use 32 bit instructions, you will have to explicitly tell MASM to use 16 bit segments. The use16, use32, and flat operands to the segment directive let you specify the segment size.

For most DOS programs, you will always want to use the use16 operand. This tells MASM that the segment is a 16 bit segment and it assembles the code accordingly. If you use one of the directives to activate the 80386 or later instruction sets, you should put use16 in all your code segments or MASM will generate bad code.

If you want to force use16 as the default in a program that allows 80386 or later instructions, there is one way to accomplish this. Place the following directive in your program before any segments:

 option segment:use16

Example:

 .586

 option segment:use16

GENERAL RULES FOR 8086/8088 INSTRUCTIONS

1. An immediate value (i.e., a constant) cannot be a destination operand.

For example, the following is invalid:
ADD 34BFh , BX

2. The destination and source operands must be of the same size, except if the source operand is an immediate value of a lower size than the destination.
For example, the following is valid:
MOV AX , 03H
3. Direct memory to memory transfer is invalid, except for string instructions. Such a transfer must be done indirectly using a general register of the appropriate size.
For example, if VAR1 and VAR2 are word variables (i.e., word memory operands) then the transfer:

MOV VAR1 , VAR2
is invalid. The transfer can be done as:
MOV AX , VAR1
MOV VAR2 , AX
4. The transfer:
 MOV SegmentRegister , SegmentRegister
is invalid for all segment registers: CS, DS, SS, ES.
5. The transfer:
 MOV SegmentRegister , ImmediateValue
is invalid for all Segment Registers: CS, DS, SS, ES. Such a transfer can be done indirectly using a 16-bit general register.
For example, if a program has a data segment that is defined by a simplified segment directive .DATA, the DS register can be initialized by:
MOV BX, @DATA
MOV DS, BX
6. The IP, CS, SS, and SP registers cannot be destination operands.

For example, the following is invalid:
MOV CS , 2345
SOME 8086 INSTRUCTIONS

	INSTRUCTION
	EFFECT

	MOV Destination , Source
	Destination := Source

	INC Destination
	Destination := Destination + 1

(The operand is treated as an unsigned number)

	DEC Destination
	Destination := Destination - 1

(The operand is treated as an unsigned number)

	ADD Destination , Source
	Destination := Destination + Source

(Both operands may have signed or unsigned numbers)

	SUB Destination , Source
	Destination := Destination - Source

(Both operands may have signed or unsigned numbers)

	XCHG Destination , Source
	Exchanges the contents of the source and destination. Both Source and Destination cannot be Immediate operands.

The INTerrupt Instruction

INT InterruptNumber

where InterruptNumber ranges from 00H to 0FFH (i.e., from 0 to 255).

The execution of an INT instruction causes an Interrupt Service Routine (ISR) associated with the InterruptNumber to be executed. Many of the ISRs have multiple subfunctions. To specify which subfunction is to be executed under a particular InterruptNumber, the AH register is assigned a subfunction number before the execution of the INT instruction. Example:

MOV AH , 08H

INT 21H

causes subfunction number 08H of Interrupt number 21H to be executed. In addition, some subfunctions require other values to be passed to the ISR in particular registers. Example: Subfunction 09H of Interrupt 21H displays a $-terminated string on the screen. The subfunction requires the offset of that string to be passed in the DX register:

MOV DX , OFFSET STRING

MOV AH , 09H

INT 21H

DOS FUNCTION CALLS (INT 21H)

DOS function calls preserve the contents of all the registers except the AX register and any other register or registers in which they explicitly return data.

1. TERMINATE PROGRAM AND RETURN TO DOS (DOS FUNCTION 4CH)

 MOV AH , 4CH

 INT 21H

 A code of 00H in the AL register indicates normal program termination. Thus the function is usually invoked as:

MOV AX , 4C00H

INT 21H

2. CHARACTER INPUT WITH ECHO (DOS FUNCTION CALL 01H)

MOV AH , 01H

INT 21H

The code of the input character is returned in the AL register.
3. CHARACTER INPUT WITHOUT ECHO (DOS FUNCTION CALL 08H)

MOV AH , 08H

INT 21H

 The code of the input character is returned in the AL register.
4. CHARACTER OUTPUT (DOS FUNCTION CALL 02H)

MOV AH , 02H

MOV DL , Character or CharacterCode

INT 21H

 The first two lines may be interchanged.

Note: One way of moving the cursor to the beginning of the next output line is by outputting 0Dh (Carriage Return) followed by 0Ah (Line feed):

MOV AH , 02H

MOV DL , 0DH

INT 21H

MOV DL , 0AH

INT 21H

5. DISPLAYING A $-TERMINATED STRING CONTAINING NO OTHER $-CHARACTER (DOS FUNCTION 09H)

 .DATA

 STRING_NAME DB ‘THE STRING TO BE DISPLAYED’ , ‘$’

.CODE

 . . .

 MOV AH , 09H

 MOV DX , OFFSET STRING_NAME

 INT 21H

 . . .
Note:

· The terminating $ is not displayed, even if it appears within the string. Thus this function cannot be used to display the $ character on the screen.

· The lines MOV AH , 09H and MOV DX , OFFSET STRING_NAME may be interchanged.

· The OFFSET operator returns the offset address of a variable or label. Also the statement:

MOV DX , OFFSET STRING_NAME

 is equivalent to the statement:

 LEA DX , STRING_NAME

 LEA stands for Load Effective Address.

· If the terminating $ is omitted, the operation displays characters in the memory, after the string, until it finds a $ character, if any.

· To move the cursor to the beginning of the next output line, after displaying a string, put 0Dh and 0Ah after the string and before the terminating $. Example:

PROMPT DB ‘PLEASE, ENTER YOUR NAME: ’ , 0Dh , 0Ah , ‘$’

· Another way of moving the cursor to the beginning of the next output line is to display , using DOS function 09H, a string of the form:

STRING1 DB 0Dh , 0Ah , ‘$’

6. DISPLAYING A STRING WHICH MAY CONTAIN A $-CHARACTER (DOS FUNCTION 40H)

.DATA

. . .
STRING_NAME DB ‘THE STRING TO BE DISPLAYED’

STRINGLEN EQU $ - STRING_NAME

. . .
.CODE

. . .
MOV AH , 40H

MOV BX , 01H

; file handle for the screen

MOV CX , STRINGLEN

; string length

MOV DX , OFFSET STRING_NAME

INT 21H

. . .

· The EQU directive defines a value that the assembler can use to substitute in other instructions.

· MASM or TASM makes two passes through the source file. On the first pass, MASM or TASM checks for syntax errors and creates a symbol table of names and their relative locations within a segment. To keep track of locations, it uses a location counter. The location counter is reset to 0 at the beginning of a segment. When an instruction is encountered, the location counter is increased by the number of bytes needed for the machine code of the instruction. When a name is encountered, it is entered in the symbol table along with the location counter’s value.
· An operand containing a dollar symbol, $, refers to the current value in the location counter. Thus, in the above example $ - STRING_NAME evaluates to the number of bytes between STRING_NAME and STRINGLEN which is the number of bytes (i.e., characters) in ‘THE STRING TO BE DISPLAYED’

7. BUFFERED KEYBOARD INPUT (READING A STRING)(DOS FUNCTION 0AH)

(a) To read a string, a buffer (i.e., an array) must be defined to store that string. One way of defining the buffer is:

BUFFER_NAME DB Num1 , Num2 DUP(?)

where Num1 is the maximum number of string characters to be read including the Carriage Return (0Dh), which is also read and stored in the buffer as the last string character. Num2 has a value which is one more than Num1; it is the number of bytes reserved to hold the actual length of the string (i.e., minus the Carriage Return character), the string, and the terminating Carriage Return character. Note: The maximum value for Num1 is FEh i.e., 254

Example: Define a buffer called BUFFER to store a string of maximum length 50:

Solution:

BUFFER DB 51, 52 DUP(?)

52 bytes

	
	
	
	
	

	51
	
	
	
	 0Dh stored in this byte if the length of the string is 50

	
	
	 50 bytes
	
	

	
	
	 51 bytes
	
	

 Actual string length is

 stored in this byte

(b) To read a string from the keyboard into a buffer called BUFFER as defined above, we invoke DOS function 0AH as:

MOV AH , 0AH
MOV DX , OFFSET BUFFER
INT 21H
The operation echoes the entered characters on the screen and advances the cursor. If more characters than the specified maximum (in byte 0) are entered, the speaker beeps and the additional characters are not read.
(c) Displaying a buffer, defined in 7(a) by using DOS function 40H:

MOV AH , 40H

MOV BX , 01H

; file handle for the screen

MOV CH , 00H

; Initialize CX with the string length

MOV CL , BUFFER[1]

;

LEA DX , BUFFER[2]

; Output the string starting at byte 2

INT 21H

;

 Note: The statement :

MOV DX , OFFSET BUFFER[2]

 is equivalent to:

LEA DX , BUFFER[2]

 (d) BUFFERED KEYBOARD INPUT (READING A STRING)(DOS FUNCTION 0AH):

 ANOTHER WAY OF DEFINING THE BUFFER

To read a string of , say, maximum length 50 the buffer can be defined as:

MAXLEN DB 51

ACTLEN DB ?

BUFFER DB 51 DUP(?)

To read a string into the buffer, we invoke DOS function 0AH as:

MOV AH , 0AH

MOV DX , OFFSET MAXLEN

INT 21H

(e) Displaying a buffer, defined in 7(d) by using DOS function 40H:

MOV AH , 40H

MOV BX , 01H

; file handle for the screen

MOV CH , 00H

; Initialize CX with the string length

MOV CL , ACTLEN

;

LEA DX , BUFFER

; Display the buffer

INT 21H

;
INTRODUCTION TO PROCEDURES

A procedure is a unit of code designed to perform a particular sub-task of some main task. It is written out only once in some module, but can be used many times. The advantages of using procedures are:

Improves code readability because the code does not need to be laid out as one long sequence.

Allows code to be reused because it can be written once and called from more than one place in the code.
 Allows tasks to be broken down into simpler components because procedures can be written for certain tasks (procedures can also call other procedures).
Modular code facilitates modification.

A procedure is always enclosed within some code segment.

A procedure is defined as:

PROCEDURE_NAME PROC

.

.

.
PROCEDURE_NAME ENDP

where PROCEDURE_NAME is any valid identifier.

The PROC directive usually includes one of the operands NEAR or FAR. Example:

PROCEDURE_NAME PROC FAR

.

.

.
PROCEDURE_NAME ENDP

A NEAR procedure is defined in the same code segment from which it is called, and a FAR procedure is ordinarily defined in a separate code segment. Note if none of the operands NEAR or FAR follows the PROC directive, then the procedure is by default a NEAR procedure.

CALLING A NEAR PROCEDURE

A procedure is invoked by a CALL instruction that can be direct or indirect. A direct procedure call has the format:

CALL PROCEDURE_NAME

In an indirect near procedure call, the operand for the CALL instruction is either a 16-bit general-purpose register or a memory word containing the offset address of the procedure.

Example: An indirect procedure call using a register operand.

. . .

MOV SI , OFFSET COMP

CALL SI

. . .

COMP PROC NEAR

. . .

RET

COMP ENDP

A procedure may be invoked by a JMP instruction if it does not return control to the caller:

JMP PROCEDURE_NAME

Executing a near CALL

 The return address to the calling program (the current value of the IP) is saved on the stack

 IP get the offset address of the first instruction of the procedure (this transfers control to the procedure)
RETURNING FROM A PROCEDURE

The RET instruction returns control to the caller of a procedure. There are two formats for the RET instruction:

RET

and

RET UnsignedInteger

The second form is used to discard parameters passed to the procedure through the stack. (This is discussed in another lecture)

Note: A procedure may have zero, one, or more RET instructions. A procedure will have no RET instruction in those programming situations where we don’t want to return control to the caller.

Executing a near RET

RET causes word at the top of the stack to be popped into IP (Since this value is the offset address of the statement after the CALL statement, control is transferred to that statement.)

THE GENERAL STRUCTURE OF AN EXE-FORMAT PROGRAM CONTAINING PROCEDURES

.MODEL SMALL

.STACK 0400H

.DATA

. . .

.CODE

MAIN PROC

MOV AX , @DATA
; Initialize DS

MOV DS , AX

;

. . .

CALL SUB1

. . .

CALL SUB2

. . .

MOV AX , 4C00H
; Return to DOS

INT 21H

MAIN ENDP

SUB1 PROC

. . .

RET

SUB1 ENDP

SUB2 PROC

. . .

CALL SUB3

. . .

RET

SUB2 ENDP

SUB3 PROC

. . .

RET

SUB3 ENDP

END MAIN

THE GENERAL STRUCTURES OF A COM-FORMAT PROGRAM CONTAINING PROCEDURES

	.MODEL TINY

.CODE

ORG 100H

 MAIN PROC

. . .

 CALL SUB1

. . .

 CALL SUB2

. . .

 MOV AX , 4C00H ; Return to DOS

 INT 21H

 MAIN ENDP

 SUB1 PROC

 . . .

 RET

 SUB1 ENDP

 SUB2 PROC

 . . .

 CALL SUB3

 . . .

 RET

 SUB2 ENDP

 SUB3 PROC

 . . .

 RET

 SUB3 ENDP

 . . .

 ; Data definitions, if any

 . . .
 END MAIN
	.MODEL TINY

.CODE

ORG 100H

 START: JMP MAIN

 . . .

 ; Data definitions, if any

 . . .
 MAIN PROC

. . .

 CALL SUB1

. . .

 CALL SUB2

. . .

 MOV AX , 4C00H ; Return to DOS

 INT 21H

 MAIN ENDP

 SUB1 PROC

 . . .

 RET

 SUB1 ENDP

 SUB2 PROC

 . . .

 CALL SUB3

 . . .

 RET

 SUB2 ENDP

 SUB3 PROC

 . . .

 RET

 SUB3 ENDP

 END START

Note: If the entry point is specified in the END directive, the procedures may appear in any order.

PRESERVING THE VALUES OF REGISTERS IN PROCEDURES

It is good programming practice to preserve the values of all the registers modified by a procedure, except if a register is used by the procedure to return a value to the calling program. This is done by PUSHing (i.e., saving) the values of those registers in the stack at the beginning of the procedure, and then POPing (i.e., retrieving) them from the stack, in the reverse order, before the RET instruction.

Example:
MYPROC PROC

PUSH AX

PUSH DX

. . .

; statements that modify AX and DX

. . .

;

POP DX

POP AX

RET

MYPROC ENDP

 Syntax of PUSH:

 PUSH source

Where source is either imm8, imm16, imm32, segment register, 16- or 32-bit general purpose register. If source is imm8, then the value is zero or sign extended to 16-bits.

 Syntax of POP:

 POP destination

Where destination is either mem16, mem32, segment register, 16- or 32-bit general purpose register.

Note: (a) Since the stack is used by the system to store addresses during procedure calls, and to store addresses and the values of the flags during interrupts, it is necessary that to every PUSH instruction in your program there is a corresponding POP instruction.

 (b) To preserve the FLAGS register the instructions PUSHF and POPF are used.

 To preserve the EFLAGS register the instructions PUSHFD and POPFD are used.

(c) PUSHA pushes the 16-bit general purpose registers in the order AX, CX, DX, BX, SP, BP, SI, and DI. POPA
 pops the 16-bit general purpose registers in the reverse order of PUSHA.

 PUSHAD pushes the 32-bit general purpose registers in the order EAX, ECX, EDX, EBX, ESP, EBP, ESI,

 EDI.

 POPAD pops the 32-bit general-purpose registers in the reverse order of PUSHAD.

(d) USES directive: The PROC directive may have the form:

 procedure_name PROC USES RegisterList

 where:

RegisterList is a list of registers that are used by the procedure and which must be preserved. The registers in the list are separated by spaces. Including a register in this list will cause the assembler to automatically generate the necessary PUSH instruction to save the register value, and then to generate the necessary POP instruction to restore the value of that register before control is returned to the caller.

Example:

 DISPLAY PROC USES AX BX CX

 . . .

 RET

 DISPLAY ENDP

EXAMPLES

 Procedures should normally be general and not specific, i.e., a procedure must be written such that it can be used by passing to it different parameters.

 One way of passing parameters to procedures is to use registers.
 Example1:
DISPLAY_STRING PROC

PUSH AX

MOV AH , 09H

INT 21H

POP AX

RET

DISPLAY_STRING ENDP

This procedure will be invoked by a call of the form:

. . .

MOV DX , OFFSET STRING_NAME

CALL DISPLAY_STRING

. . .

Note: If the previous procedure were coded as:

DISPLAY_STRING PROC

PUSH AX

PUSH DX

MOV AH , 09H

MOV DX , OFFSET STRING1

INT 21H

POP DX

POP AX

RET

DISPLAY_STRING ENDP

then a separate procedure will be required for every string to be displayed !

 Example2:
STRING_DISPLAY PROC

PUSH AX

PUSH BX

MOV AH , 40H

MOV BX , 01H

INT 21H

POP BX

POP AX

RET

STRING_DISPLAY ENDP

This procedure will be invoked by a call of the form:

. . .

MOV CH , 00H

MOV CL , string_length

LEA DX , StringName

CALL STRING_DISPLAY

. . .

 Example3:

DISPLAY_CHAR PROC

PUSH AX

MOV AH , 02H

INT 21H

POP AX

RET

DISPLAY_CHAR ENDP

This procedure will be invoked by a call of the form:

. . .

MOV DL , character

CALL DISPLAY_CHAR

. . .

 Example4:

READ_CHAR PROC

; Returns the character read in the AL register

PUSH CX

; Preserve the CX register

MOV CH, AH

; Preserve the AH register

MOV AH , 01H

INT 21H

MOV AH, CH

; Restore the AH register

POP CX

; Restore the CX register

RET

READ_CHAR ENDP

Note: In this procedure the AX register is not pushed and then popped (i.e., it is not preserved) because the procedure returns a value to the calling program in the AL register. This procedure will be invoked by a call of the form:

. . .

CALL READ_CHAR

. . .

THE CALL AND RETURN MECHANISM FOR A NEAR PROCEDURE

Assume that a program defines a stack segment as:

.STACK 200

then the original state of this stack is:

	
	
	
	high address

	
	
	
	

	byte 200
	
	(SP
	

	byte 199
	
	
	

	byte 198
	
	
	

	
	
	
	

	
	
	
	

	
	.
	stack segment
	

	
	.
	
	

	
	.
	
	

	
	
	
	

	byte 1
	
	
	

	byte 0
	
	(SS
	

	
	
	
	low address

Notice that the SP register is initialized to point one byte beyond the stack. The reason is that when a PUSH instruction:

PUSH Operand16

 is executed the value in the SP register is automatically decremented by 2 and then the value of the word operand is pushed into the stack at the new word pointed to by SP:

(SP) ((SP) - 2

(Word at Top of Stack) ((Operand16)

 In the above example, the first word to be pushed into the stack will be stored at bytes 198 and 199. The state of the stack after pushing one word is then:

	
	
	
	high address

	
	
	
	

	byte 200
	
	
	

	byte 199
	XX
	
	

	byte 198
	XX
	(SP
	

	
	
	
	

	
	
	
	

	
	.
	stack segment
	

	
	.
	
	

	
	.
	
	

	
	
	
	

	byte 1
	
	
	

	byte 0
	
	(SS
	

	
	
	
	low address

When a POP instruction:

POP Operand16

is executed, the value of the word at the current top of the stack (i.e., the word pointed to by SP) is copied to the operand of the POP instruction and then the value of the SP register is automatically incremented by 2:

Operand16 ((Word at top of stack)

(SP) ((SP) + 2

Since the value of the popped word is no longer accessible in the stack it will be overwritten by a subsequent PUSH operation.

When a NEAR procedure is called the following sequence of events occurs:

· (SP) ((SP) - 2

· (Word at top of Stack) ((IP)

i.e., the offset address of the statement after the CALL statement is stored in the stack.

· (IP) (offset address of first executable statement in the called procedure.

Since the logical address CS:IP now refers to the first executable statement in the called NEAR procedure, program execution continues with the execution of the procedure statements.

When a RET instruction is executed in the procedure the following sequence of events occurs:

· (IP) ((Word at top of Stack)

i.e., restore the offset address of the statement, in the calling program, after the CALL statement.

· (SP) ((SP) + 2

Since now the logical address CS:IP refers to the statement, in the calling program, after the CALL statement, program execution continues from that statement.

Note: For a NEAR procedure call the value of CS is not pushed in the stack, because both the calling program and the called procedure are in the same code segment; the value of CS does not change.

CONTROL STRUCTURES

The Processor Status and the FLAGS Register

The circuits in the CPU can perform simple decision-making based on the current state of the processor. For the 8086/8088 processors, the processor state is implemented as nine bits, called flags, in the Flags register. Each decision made by the 8086/8088 CPU is based on the values of these flags.

The flags are classified as either status flags or control flags. There are 6 status flags: Carry flag (CF), Parity flag (PF), Auxiliary carry flag (AF), Zero flag (ZF), Sign flag (SF), and Overflow flag (OF). There are 3 control flags: Trap flag (TF), Interrupt flag (IF), and Direction flag (DF).

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	
	
	
	
	OF
	DF
	IF
	TF
	SF
	ZF
	
	AF
	
	PF
	
	CF

The Flags register: Bits 8, 9, and 10 are the Control flags.
The Status flags reflect the result of some instructions executed by the processor. For example, when a subtraction operation results in a zero, the Zero flag (ZF) is set to 1 (true). The Control flags enable or disable certain operations of the processor. For example, if the Interrupt flag (IF) is cleared to 0, inputs from the keyboard are ignored by the processor.

Most 8086/8088 instructions can be classified into three categories:

(i) Instructions that modify one or more Status flags. (Status flags modifying instructions).

(ii) Instructions that modify one or more Control flags. (Control flags modifying instructions).

(iii) Instructions that do not modify any flag.

FLOW CONTROL INSTRUCTIONS

· The JMP (Jump), CALL, RET, and IRET instructions transfer control unconditionally to another part of the program.

· The conditional jump instructions, except JCXZ and JECXZ, transfer control to another part of the program each depending on one or more Status flag settings. These instructions are of the form Jcondition, where condition is represented by one, two, or three letters.

· JCXZ and JECXZ transfer control to another part of the program if CX = 0 and ECX = 0 respectively.

· The LOOP instruction decrements CX and transfer control to the beginning of its loop if CX (0. If CX = 0 before the LOOP instruction, it is decremented to -1 at the end of the first iteration of the loop. This -1 is treated as the unsigned number 65535, thus the loop will iterate 65536 times.

· The conditional loop instructions LOOPE and LOOPZ, which are equivalent, decrement CX and transfer control to the beginning of their loops if CX (0 and ZF = 1. If CX (0 before the loop, the loop is executed once.

· The conditional loop instructions LOOPNE and LOOPNZ, which are equivalent, decrement CX and transfer control to the beginning of their loops if CX (0 and ZF = 0. If CX (0 before the loop, the loop is executed once.

THE JMP INSTRUCTION (Unconditional Jump)

The JMP instruction, whose syntax is:

JMP target

unconditionally transfers control to the target location. There are two major categories of JMP instructions:

(i) Intrasegment jump: A jump to a statement in the same code segment.

(ii) Intersegment or far jump: A jump to a statement in a different code segment.
Intrasegment jumps simply change the value in the IP register. Intersegment jumps change both CS and IP.

Direct and Indirect jumps

A jump can either be direct or indirect. In a direct jump the address of the target is obtained from the instruction itself, i.e., the operand of the JMP instruction is a label. Example:

JMP L2

 In an indirect jump the address of the target is obtained from a 16-bit or a 32-bit variable or a general-purpose register referenced by the JMP instruction. Example:

JMP AX

CONDITIONAL JUMP INSTRUCTIONS

Conditional jumps are of the general form:
 Jcondition StatementLabel

where (i) condition is one, two, or three letters (ii) the StatementLabel must in the current code segment and should be within -128 to +127 bytes from the conditional jump instruction.

How the CPU implements a conditional jump

Except for the JCXZ (Jump if the value in the CX register is zero) and JECXZ (Jump if the value in ECX register is zero) instruction, every conditional jump instruction must follow a status-flag modifying instruction, either immediately or otherwise. It is the settings of the flags by this status-flag modifying instruction to which the conditional jump reacts:
When a conditional jump is executed, the CPU checks the flags register. If the conditions for the jump (expressed as one or more status flag settings) are true, the CPU adjusts the IP register to point to the destination label, so that the instruction at this label will be executed next. If the jump condition is false, then the IP register is not altered; this means that the next sequential instruction will be executed.

Note: The conditional jump instructions do not modify the flags; they only react to the current flag values.

Example:
. . .

SUB AX , BX

JZ L2

; jump to L2 if the result is zero

.

.

.

L2:

Making a conditional jump to “jump” to a label outside the range -128 to 127 bytes

A conditional jump cannot jump to a label outside the range -128 to +127 bytes. To overcome this, change the conditional jump to its opposite, and then use a JMP instruction to jump to the label. Example: Suppose label L2 in the following fragment is outside the range:

. . .

SUB AX , BX

JZ L2

; jump to L2 if the result is zero

.

.

.

L2:

then change the fragment to the following equivalent fragment:

. . .

SUB AX , BX

JNZ L1

JMP L2

L1:
.

.

.

L2:

MASM 6.0 and above can automate jump-extending for you. If you target a conditional jump to a label farther than 128 bytes away, MASM rewrites the instruction with an unconditional jump, which ensures that the jump can reach its target.

The comparison of signed numbers and the comparison of unsigned numbers: THE CMP (Compare) INSTRUCTION

· A signed number can be greater, less, or equal to another signed number.

· An unsigned number can be above, below, or equal to another unsigned number.

The CMP instruction, whose syntax is:

CMP Operand1 , Operand2

compares two operands, and then sets or clears the following flags: AF , CF , OF , PF , and ZF. The instruction performs the subtraction:

Operand1 - Operand2

without modifying any of its operands.

Note:

· The two operands must be of the same size, except in a comparison of the form:

CMP Operand, Immediate

 Immediate may be of a smaller size than Operand.

· Both operands may not be memory locations at the same time.

· No operand may be a segment register.

· Operand1 may not be an immediate value.

Conditional jumps can be classified into three: (1) Signed jumps, (2) Unsigned jumps, and (3) Single flag jumps.

	
	
	SIGNED JUMPS
	UNSIGNED JUMPS

	condition
	equivalent condition
	mnemonic
	jump condition
	mnemonic
	jump condition

	(
	not (
	JG , JNLE
	ZF = 0 and SF = OF
	JA , JNBE
	CF = 0 and ZF = 0

	(
	not (
	JGE , JNL
	SF = OF
	JAE , JNB
	CF = 0

	(
	not (
	JL , JNGE
	SF (OF
	JB , JNAE
	CF = 1

	(
	not (

	JLE , JNG
	ZF = 1 or SF (OF
	JBE , JNA
	CF = 1 or ZF = 1

Single flag jumps
	mnemonic
	jump condition
	description

	JE , JZ
	ZF = 1
	Jump if equal

	JNE , JNZ
	ZF = 0
	Jump if not equal

	JC
	CF = 1
	Jump if carry

	JNC
	CF = 0
	Jump if no carry

	JO
	OF = 1
	Jump if overflow

	JNO
	OF = 0
	Jump if no overflow

	JS
	SF = 1
	Jump if sign negative

	JNS
	SF = 0
	Jump if sign is not negative

	JP , JPE
	PF = 1
	Jump if parity even, i.e., if there is an even number of 1 bits in the result.

	JNP , JPO
	PF = 0
	Jump if parity odd, i.e., if there is an odd number of 1 bits in the result.

Example: Write a loop to display: AAAAAA

Solution:
. . .

MOV CX , 6

MOV AH , 02H

MOV DL , ‘A’

 L1:
INT 21H

DEC CX

JNZ L1

. . .

an alternative solution is:

. . .

MOV CX , 6

MOV AH , 02H

MOV DL , ‘A’

 L1:
INT 21H

DEC CX

JCXZ L2

JMP L1

 L2:

. . .

Example: Write a loop to display: ABCDEFG

Solution:
. . .

MOV BL , 7

MOV AH , 02H

MOV DL , ‘A’

 START:
INT 21H

INC DL

DEC BL

JNZ START

. . .

an alternative solution is:

. . .

MOV AH , 02H

MOV DL , ‘A’

 LABEL1:
INT 21H

INC DL

CMP DL , ‘G’

JBE LABEL1

. . .

Example: Write a loop to display: Z

Y

X

W

V

U

Solution:

MOV AH , 02H

MOV BL , ‘Z’

L2:
MOV DL , BL

INT 21H

MOV DL , 0DH

; generate CR and LF

INT 21H

;

MOV DL , 0AH

;

INT 21H

;

DEC BL

CMP BL , ‘U’

JAE L2

Example: Write a procedure which sets the Carry Flag if the AL register contains an ASCII digit, i.e., ‘0’ , ‘1’ , ‘2’ , . . . , or ‘9’, otherwise it clears the Carry Flag.

Solution: The state of the Carry Flag following the execution of the instruction:

CMP Destination , Source

is one of:

	
	State of Carry Flag

	Destination (Source
	0

	Destination = Source
	0

	Destination (Source
	1

Based on the above table, the required procedure is:

AL_IS_DIGIT? PROC

CMP AL , 30H

; CF = 1 if AL (‘0’ otherwise CF = 0

CMC

; CF = 0 if AL (‘0’ otherwise CF = 1

JNC DONE

; Jump to DONE if CF = 0

CMP AL , 3AH

; CF = 1 if AL ((‘9’ + 1) otherwise CF = 0

DONE:
RET

AL_IS_DIGIT? ENDP

A typical call to the above procedure is:

CALL AL_IS_DIGIT?

JC L4

; Jump to L4 if AL contains an ASCII digit

.

. (Action to be taken if AL does not contain an ASCII digit)

.

JMP L5

 L4:
.

. (Action to be taken if AL contains an ASCII digit)
 L5:
IMPLEMENTATION OF HIGH-LEVEL LANGUAGE CONTROL STRUCTURES

Note: In what follows it is assumed that OP, OP1 and OP2 are signed operands such that in any comparison there is no assembly error, and statement' is the assembly language translation of statement.

1. IF-ENDIF STATEMENT

(a) IF(OP1 = OP2)THEN

 statement1

 statement2

ENDIF

can be translated to:

CMP OP1 , OP2

JE NEXT_LABEL

JMP END_IF

NEXT_LABEL:

 statement1’

 statement2’

END_IF:

however, if the condition is reversed a better solution is obtained:

CMP OP1 , OP2

JNE END_IF

 statement1’

 statement2’

END_IF:

(b) IF((AL > OP1) OR (AL >= 0P2))THEN

 statement

 ENDIF

can be translated to:

CMP AL , OP1

JG L1

CMP AL , OP2

JGE L1

JMP L2

 L1: statement’

 L2:

(c) IF((AL > OP1) AND (AL >= OP2))THEN

statement’

 ENDIF

 can be translated to:

 CMP AL , OP1

 JG L1

 JMP END_IF

 L1:
 CMP AL , OP2

 JGE L2

 JMP END_IF

 L2: statement’

 END_IF:

however a better solution is obtained by reversing each of the conditions and jumping to an END_IF label when any reversed condition is true:

CMP AL , OP1

JNG END_IF

CMP AL , OP2

JNGE END_IF

statement’

 END_IF:

2.
IF-ELSE-ENDIF STATEMENT

IF(OP1 <= OP2)THEN

statement1

statement2

ELSE

statement3

ENDIF

can be translated to:

CMP OP1 , OP2

JLE L1

statement3’

JMP END_IF

L1:
statement1’

statement2’

END_IF:

however, if the condition is reversed the following solution is obtained:

CMP OP1 , OP2

JNLE L1

statement1’

statement2’

JMP END_IF

L1:
statement3’

END_IF:

3. WHILE LOOP (while loop condition is true)

WHILE(OP1 < OP2)DO
 statement1
 statement2
ENDWHILE
can be translated to:
START: CMP OP1 , OP2
 JL WHILE_BODY
 JMP END_WHILE
WHILE_BODY:
statement1’
statement2’
JMP START
END_WHILE:
 however, a better solution is obtained by reversing the condition and exiting the loop when the reversed condition becomes true:
 START: CMP OP1 , OP2
 JNL END_WHILE
statement1’
statement2’
JMP START
END_WHILE:
4. DO-WHILE (do, while loop condition is true)
DO
 statement1
 statement2
WHILE(OP1 < OP2)
can be translated to:
START: statement1’
statement2’
CMP OP1 , OP2
JL START
5. REPEAT- UNTIL LOOP (Repeat until the loop condition becomes true)
 REPEAT
 statement1
 statement2
 statement3
 UNTIL(OP1 = OP2) OR (OP1 > 0P3)
can be translated to:
SREPEAT:
 statement1’
 statement2’
 statement3’
 CMP OP1 , OP2
 JE END_REPEAT
 CMP OP1 , OP3
 JG END_REPEAT
 JMP SREPEAT
END_REPEAT:
however, a better solution is obtained by reversing the last condition:
SREPEAT:
 statement1’
 statement2’
 statement3’
 CMP OP1 , OP2
 JE END_REPEAT
 CMP OP1 , OP3
 JNG SREPEAT
END_REPEAT:
6. FOR LOOP
for(i = 3 ; i <= 40 ; i++)
 {
 statement1 ;
 statement2 ;
 statement3 ;
 }
can be translated to:
 MOV BL , 3
START: CMP BL , 40
 JA END_FOR
statement1’
 statement2’
 statement3’
 INC BL
 JMP START
END_FOR:
Note: We assume that BL is not modified in any of the statements: statement1’, statement2’, and statement3’
7. THE SWITCH STATEMENT
switch(OP)
 {
 case const1: statement1 ;
 break ;
 case const2: statement2 ;
 break ;
. . .
 case constN: statementN ;
 break ;
default:
 statementN+1 ;
}
can be translated to:
CMP OP , const1
JE L1
CMP OP , const2
JE L2
. . .
CMP OP , constN
JE LN
statementN+1’
JMP END_SWITCH
L1: statement1’
JMP END_SWITCH
L2: statement2’
 JMP END_SWITCH
 . . .

LN: statementN’
END_SWITCH:
THE LOOP INSTRUCTION

The syntax of the LOOP instruction is:

LOOP StatementLabel

where StatementLabel is the label of a statement, in the current code segment, that is within -128 bytes from the loop instruction. (Note: The label may be within +127 bytes from the LOOP instruction; but although such loops are syntactically correct, they are meaningless; the body of the loop is not executed).

Note: If the label is outside the range, the assembler generates the error: “jump destination too far”. Unlike a conditional jump, the range of a loop is not automatically extended.

The LOOP instruction decrements CX and transfer control to the beginning of its loop if CX (0; otherwise the next sequential instruction in the program is executed. If CX = 0 before the loop it is decremented to -1 at the end of the first iteration of the loop. This -1 is treated as the unsigned number 65535, thus the loop will iterate 65536 times. Similarly if CX = -n before the loop, the loop will iterate m + 1 times, where m is the 2’s complement of -n.

The LOOP instruction is used to implement a for-loop that will execute at least once and in which the loop index decrements by one in each loop iteration, and the loop terminates when the loop index becomes zero. For example, the loop:

for(k = 50 ; k > 0 ; k--)

 {

 statement1 ;

 statement2 ;

 }
can be implemented as:

MOV CX , 50

START_FOR:
statement1’

statement2’

LOOP START_FOR
Note: The value of CX must not be modified, without being saved and restored, within the loop.

If the number of iterations of the LOOP instruction is computed dynamically, it is better to check that that number is positive before the loop is executed; otherwise the loop will be executed many times:

MOV CX , NUMBER

CMP CX , 0

JLE END_FOR

START_FOR:

. . .

LOOP START_FOR

END_FOR:

The LOOP instruction can also be used to implement for-loops in which the loop index is incremented, if a general purpose register of an appropriate size, other than CX, or a variable of an appropriate size is used as the loop index. For example, the loop:

 for(i = 5 ; i <= 100 ; i++)

 {

 statement1 ;

 statement2 ;

 }

can be implemented as:

MOV BL , 5

MOV CX , 96

 L1:
statement1’

statement2’

INC BL

LOOP L1

assuming that (a) BL and CX are not modified by statement1’ and statement2’ , and (b) BL is used in at least one of the statements.

Nested LOOP instructions
LOOP instructions can be nested provided the CX register is saved before entering the inner loop and then restored when exiting the inner loop. For example, the nested for-loops:

for(i = 40 ; i > 0 ; i--)

 {

 statement1 ;

 statement2 ;

 for(k = 10 ; k > 0 ; k--)

 {

 statement3 ;

 statement4 ;

 }

 statement5 ;

 }

can be implemented as:

MOV CX , 40

OUTER_FOR:
statement1’

statement2’

PUSH CX

MOV CX , 10

INNER_FOR:
statement3’

statement4’

LOOP INNER_FOR

POP CX

statement5’

LOOP OUTER_FOR

Example: Write nested LOOP instructions to display the pattern:

AxxxxxxxxxxAxxxxxxxxxxAxxxxxxxxxxAxxxxxxxxxx

Solution:
. . .

MOV AH , 02H

MOV CX , 4

 L1:
MOV DL , ‘A’

INT 21H

PUSH CX

MOV CX , 10

MOV DL , ‘x’

 L2:
INT 21H

LOOP L2

POP CX

LOOP L1

. . .

THE LOOPE (Loop while Equal) OR LOOPZ (Loop while zero) INSTRUCTION

LOOPE and LOOPZ are different mnemonics for the same instruction. The syntax of the LOOPE instruction is:

LOOPE StatementLabel

where StatementLabel is the label of a statement, in the current code segment, that is within -128 bytes from the loop instruction. (Note: The label may be within +127 bytes from the LOOPE instruction; but although such loops are syntactically correct, they are meaningless; the body of the loop is not executed).

Note: If the label is outside the range, the assembler generates the error: “jump destination too far”. Unlike a conditional jump, the range of a conditional loop is not automatically extended.
The LOOPE instruction decrements CX and transfer control to the beginning of its loop if CX (0 and ZF = 1; otherwise the next sequential instruction in the program is executed. If CX (0 before the loop, the loop is executed once.

The LOOPE instruction is used to implement for-loops in which the existence of an equal condition at the end of the loop is used to repeat the loop, i.e., loops of the form:

for(k = 50 ; k > 0 ; k--)

 {

 statement1 ;

 statement2 ;

 if(OP1 (OP2)

 break ;

 }

the above for-loop can be implemented as:

MOV CX , 50

START_FOR:
statement1’

statement2’

CMP OP1 , OP2

LOOPE START_FOR

Note: A flag modifying instruction should not appear between the CMP which determines loop continuation or termination and the conditional loop instruction; otherwise the logic of the loop will change.

Example: Write a loop that reads 16 characters if each is ‘Y’, otherwise the loop terminates. The count of the number of characters read must be left in the BL register.

Solution:
MOV BL , -1

MOV AH, 01H

MOV CX , 16

 START:
INC BL

; This flag modifying instruction cannot appear between CMP and LOOPE

INT 21H

CMP AL , ‘Y’

LOOPE START

JNZ L1

INC BL

L1:

THE LOOPNE (Loop while Not Equal) OR LOOPNZ (Loop while not zero)

INSTRUCTION

LOOPNE and LOOPNZ are different mnemonics for the same instruction. The syntax of the LOOPNE instruction is:

LOOPNE StatementLabel

where StatementLabel is the label of a statement, in the current code segment, that is within -128 bytes from the loop instruction. (Note: The label may be within +127 bytes from the LOOPNE instruction; but although such loops are syntactically correct, they are meaningless; the body of the loop is not executed).

Note: If the label is outside the range, the assembler generates the error: “jump destination too far”. Unlike a conditional jump, the range of a conditional loop is not automatically extended.
The LOOPNE instruction decrements CX and transfer control to the beginning of its loop if CX (0 and ZF = 0; otherwise the next sequential instruction in the program is executed. If CX (0 before the loop, the loop is executed once.

The LOOPNE instruction is used to implement for-loops in which the existence of a not equal condition at the end of the loop is used to repeat the loop, i.e., loops of the form:

 for(k = 50 ; k > 0 ; k--)

 {

 statement1 ;

 statement2 ;

 if(OP1 = OP2)

 break ;

 }

the above for-loop can be implemented as:

MOV CX , 50

START_FOR:
statement1’

statement2’

CMP OP1 , OP2

LOOPNE START_FOR

Example: Write a loop that reads 16 characters if each is not ‘Y’, otherwise the loop terminates. The count of the number of characters read must be left in the BL register.

Solution:
MOV BL , -1

MOV AH, 01H

MOV CX , 16

 START:
INC BL

; This flag modifying instruction cannot appear between CMP and LOOPNE

INT 21H

CMP AL , ‘Y’

LOOPNE START

JZ L1

INC BL

L1:

Anonymous Labels

When you code jumps and loops in assembly language, you must invent many label names. One alternative to continually thinking up new label names is to use anonymous labels, which you can use anywhere in your program. But because anonymous labels do not provide meaningful names, they are best used for jumping over only a few lines of code. You should mark major divisions of a program with actual named labels.
Use two at signs (@@) followed by a colon (:) as an anonymous label. To jump to the nearest preceding anonymous label, use @B (back) in the jump instruction’s operand field; to jump to the nearest following anonymous label, use @F (forward) in the operand field.

The jump in the following example targets an anonymous label:

 JGE @F
 .
 .
 .
@@:

The items @B and @F always refer to the nearest occurrences of @@:, so there is never any conflict between different anonymous labels.
Defining and Using Complex Data Types

Arrays and Strings

An array is a sequential collection of variables, all of the same size and type.

A string is an array of characters. For example, in the string “ABC,” each letter is an element.

Declaring and Referencing 1D-Arrays

The following examples declare the arrays warray and xarray:

warray WORD 1, 2, 3, 4
xarray DWORD 0FFFFFFFFh, 789ABCDEh

Initializer lists of array declarations can span multiple lines:

big BYTE 21, 22, 23, 24, 25,
 26, 27, 28

somelist WORD 10,
 20,
 30

The DUP Operator

You can also declare an array with the DUP operator:

count DUP (initialvalue [[, initialvalue]]...)

The following examples show various ways to allocate data elements with the DUP operator:

array DWORD 10 DUP (1) ; 10 doubleword initialized to 1
buffer BYTE 256 DUP (?) ; 256-byte buffer

masks BYTE 20 DUP (040h, 020h, 04h, 02h)
; 80-byte buffer

three_d DWORD 5 DUP (5 DUP (5 DUP (0))) ; 125 doublewords

Referencing Arrays

Each element in an array is referenced with an index number, beginning with zero. The array index appears in brackets after the array name, as in: array[9]

Assembly-language indexes differ from indexes in high-level languages. In high-level languages the index number always corresponds to the element’s position regardless of the element’s size.

In assembly language, an element’s index refers to the number of bytes between the element and the start of the array. Thus, for the array:

wprime WORD 1, 3, 5, 7, 11, 13, 17

wprime[4] represents the third element (5), which is 4 bytes from the beginning of the array. Similarly, the expression wprime[6] represents the fourth element (7) and wprime[10] represents the sixth element (13).

A variable name is a symbol that represents the contents of a particular address in memory. Thus, if the array wprime begins at address DS:2400h, the reference wprime[6] means to the processor “the word value contained in the DS segment at offset 2400h-plus-6-bytes.”

Thus you can substitute the plus operator (+) for brackets, as in:

wprime[9]
wprime+9

Since brackets simply add a number to an address, you don’t need them when referencing the first element. Thus, wprime and wprime[0] both refer to the first element of the array wprime.

Example:

W dw 10,20,30,40,50,60

The address of the array variable is called the base address of the array

If the offset address of the array is 0200h, the array looks like this in memory:

element offset address symbolic address contents
 1
 0200h
W

10
 2
 0202h
W+2

 20
 3
 0204h
W+4

 30
 4
 0206h
W+6

 40

Location of Array Elements

The offset address of an array element may be computed by adding a constant to the base address:

If A is an array and S denotes the number of bytes in an element, then the offset address of element A[i] is A + i*S

To exchange the 9th and 24th element in an word array W you can use:

mov ax,W+18
; ax has 9th element of W
xchg W+48, ax
; ax has 24th element of W
mov W+18, ax
; complete exchange

LENGTHOF, SIZEOF, and TYPE for Arrays

The LENGTHOF operator returns the number of elements in the array. The SIZEOF operator returns the number of bytes used by the initializers in the array definition. TYPE returns the size of the elements of the array. The following examples illustrate these operators:

array WORD 40 DUP (5)

larray EQU LENGTHOF array ; 40 elements
sarray EQU SIZEOF array ; 80 bytes
tarray EQU TYPE array ; 2 bytes per element

num DWORD 4, 5, 6, 7, 8, 9, 10, 11

lnum EQU LENGTHOF num ; 8 elements
snum EQU SIZEOF num ; 32 bytes
tnum EQU TYPE num ; 4 bytes per element

warray WORD 40 DUP (40 DUP (5))

len EQU LENGTHOF warray ; 1600 elements
siz EQU SIZEOF warray ; 3200 bytes
typ EQU TYPE warray ; 2 bytes per element

Declaring and Initializing Strings

A string is an array of characters. Initializing a string like "Hello, there" allocates and initializes 1 byte for each character in the string. An initialized string can be no longer than 255 characters.

As with arrays, string initializers can span multiple lines. The line must end with a comma if you want the string to continue to the next line.

str1 BYTE "This is a long string that does not ",

 "fit on one line."

Strings must be enclosed in single (') or double (") quotation marks. To put a single quotation mark inside a string enclosed by single quotation marks, use two single quotation marks. Likewise, if you need quotation marks inside a string enclosed by double quotation marks, use two sets. These examples show the various uses of quotation marks:

char BYTE 'a'
message BYTE "That's the message." ; That's the message.
warn BYTE 'Can''t find file.'
; Can't find file.
string BYTE "This ""value"" not found."
; This "value" not found.

You can always use single quotation marks inside a string enclosed by double quotation marks and vice versa.

The ? Initializer

You do not have to initialize an array. The ? operator lets you allocate space for the array without placing specific values in it.

The actual values stored in arrays allocated with ? depend on certain conditions. The ? initializer is treated as a zero in a DUP statement that contains initializers in addition to the ? initializer. If the ? initializer does not appear in a DUP statement, or if the DUP statement contains only ? initializers, the assembler leaves the allocated space unspecified.

LENGTHOF, SIZEOF, and TYPE for Strings

Because strings are simply arrays of byte elements, the LENGTHOF, SIZEOF, and TYPE operators behave as illustrated in this example:

msg BYTE "This string extends ",

 "over three ",

"lines."

lmsg EQU LENGTHOF msg
 ; 37 elements
smsg EQU SIZEOF msg
; 37 bytes
tmsg EQU TYPE msg
; 1 byte per element

Two-Dimensional Arrays

A 2D-array can be viewed as consisting of rows and columns:

A[0,0] A[0,1] A[0,2] A[0,3]
A[1,0] A[1,1] A[1,2] A[1,3]
A[2,0] A[2,1] A[2,2] A[2,3]

Locating an Element in a 2D Array

Elements may be stored in row-major order or column-major order

Row Major Ordering

Row major ordering assigns successive elements, row-wise, to successive memory locations.

[image: image9.jpg]
Let A be an M x N array in row-major order, where the size of each element is S bytes.

· To find the offset address of A[i,j]:

· Find where row i begins

Row 0 begins at offset A -- row i begins at offset A + i*N*S

· Find the offset of the jth element in that row

The jth element is stored j*S bytes from the beginning of the row

So, the offset address of A[i,j] is A+(i*N + j)*S

Thus, for a two-dimensional column major array:

Element_Address = Base Address +

 (rowIndex * NumberOfColumns + columnIndex) * ElementSize

Column Major Ordering

Column major ordering assigns successive elements, column-wise, to successive memory locations.

[image: image10.jpg]
Let A be an M x N array in column-major order, where the size of each element is S bytes.

· To find the offset address of A[i,j] :

· Find where column j begins

Column 0 begins at offset A -- column j begins at offset A + j*M*S

· Find the offset of the ith element in that column

The ith element is stored i*S bytes from the beginning of the column

So, the offset address of A[i,j] is A+(j*M + i)*S

Thus, for a two-dimensional column major array:

Element_Address = Base_Address +

 (columnIndex * numberOfRows + rowIndex) * Element_Size

Declaring and Referencing 2D-Arrays

A two-dimensional array is declared as a 1D-array:

Example:

Array1 byte
3 * 5 DUP(?)

Array2 word 4 DUP(6 DUP(?))

Example: 3 quiz grades for each of 4 students are stored in row-major, find the sum of the last row of the array:

.DATA

QuizGrade word 40,
70,
55,

 87,
90,
79,

 65,
80,
75,

 50,
60,
45

.CODE

MOV BX, @DATA

MOV DS, BX

MOV AX, QuizGrade + 18

; QuizGrade[3, 0]

ADD AX, QuizGrade + 20

; + QuizGrade[3, 1]

ADD AX, QuizGrade + 22

; + QuizGrade[3, 2]

Structures

A structure is a group variables of possibly dissimilar data types that can be accessed as a unit or by any of its components.

Each field in a structure has an offset relative to the first byte of the structure. The size of a structure is the sum of its components.

Declaring Structure Types

When a structure type is declared, a template for data is created not a variable. The template states the sizes and, optionally, the initial values in the structure, but allocates no memory.

The STRUCT or STRUC keyword marks the beginning of a type declaration for a structure. The format for STRUCT type declarations is:

name STRUCT
 fieldDeclarations
name ENDS
The fieldDeclarations is a series of one or more variable declarations. You can declare default initial values individually or with the DUP operator. You can nest structures.

Examples:

Date STRUCT
day db 1

;Day field, default value = 1
month db ?

; Month field, no default value
year dw 2003

;Year field, default = 2003
Date ENDS
STUDENT STRUCT

StudentName BYTE 40 DUP(?)

ID
 WORD ?

QuizScore WORD 5 DUP (?)

STUDENT ENDS

ITEM STRUCT

ItemName BYTE 'Item Name'

 ItemNumber WORD ?

 ItemPrice
 WORD ?
ITEM ENDS

Structure field names must be unique within a nesting level because they represent the offset from the beginning of the structure to the corresponding field.

A label elsewhere in the code may have the same name as a structure field, but a text macro cannot. Also, field names between structures need not be unique.

Declaring Structure Variables

A structure variable declaration starts with a label, followed by the structure name, and ending with a list of default values in angle brackets.

The syntax for defining a structure variable is:

[[VariableName]] StructureTypeName < [[initializer [[,initializer]]...]] >
[[VariableName]] StructureTypeName { [[initializer [[,initializer]]...]] }

[[VariableName]] StructureTypeName constant DUP ({ [[initializer [[,initializer]]...]] })

Array and string initializers cannot be larger than their defaults.

The list of initializers can be broken only after a comma unless you end the line with a continuation character (\).

You can also use the line continuation character to extend a line as shown in the Item4 declaration that follows.

Examples:

.DATA

birthday Date <>

; 1-0-2003
today Date <16,3>

; 16-3-2003
registrationDay Date <15,4,1998>
 ; 15-4-1998
payday Date <,11,>

; 1-11-2003

yesterday Date {15, 3, 2003}

Item1 ITEM < >

; Accepts default initializers
Item2 ITEM { }

; Accepts default initializers
Item3 ITEM <'Bolts', 126, 5>
; Overrides default value of the fields
Item4 ITEM { \
 'Screws',
; Item name
 125 ,

; Part number

 10 \

; Price
 }

Uninitialized default field values are set to zero, unless all fields in the structure are un-initialized.

Using Structure Variables

The fields within structure variables can be accessed by the “dot operator”. The syntax is:

StructureVariable. FieldName

For example

mov today.day, 17
; change day to 17
mov ax, today.year

; put year into ax
add today.year, cx

; add cx to year field
mov bx, OFFSET today

; Load structure address

Nested Structures

Structures can be nested.

Example:

NAMELEN
 EQU
24

Employee
STRUCT

Name
DB
NAMELEN DUP (?)

ID
DW ?

HireDate
Date
<>

RetirementDate
Date
<>

Employee ENDS

employee1 Employee {“Zubeir Qasim”, 693754, {12, 7, 1997}, {12, 7, 20013}}

To declare a named structure inside another structure, give the STRUCT keyword first and then define a label for it. The ENDS directive of such a nested structure must not have a label.

Example:
 INVENTORY STRUCT

 quantity WORD ?

ItemInfo ITEM { }

 STRUCT supplier

 supplierID WORD ?

 name BYTE 60 DUP(?)

 address BYTE 80 DUP(?)

ENDS
 INVENTORY ENDS

yearly INVENTORY <62500, < “hammer”, 450, 12>, \

 <5987, “National Steel Company”, “Jubail, Saudi Arabia”>>

 . . .
 mov ax, yearly.ItemInfo.ItemNumber
 mov bx, yearly.supplier.supplierID;

Arrays of Structures

You can define an array of structures using the DUP operator or by creating a list of structures.

NUMEMPS
 EQU
100

EMPLIST
Employee
NUMEMPS DUP (<>)

Item8 ITEM {'Bolts', 126, 10},

{'Pliers',139, 7},

{'Saw', 414, 20}

LENGTHOF, SIZEOF, and TYPE for Structures

The size of a structure variable determined by SIZEOF is the offset of the last field, plus the size of the last field.

INFO STRUCT
 buffer BYTE 100 DUP (?)
 crlf BYTE 13, 10
 query BYTE 'Filename'
INFO ENDS

info1 INFO { , , 'Dir' }

lotsof INFO { , , 'file1' },
 { , , 'file2'},
 { , , 'file3' }

sinfo1 EQU SIZEOF info1 ;110 = number of bytes in initializers

linfo1 EQU LENGTHOF info1 ; 1 = number of items

tinfo1 EQU TYPE info1 ; 110 = same as size

slotsof EQU SIZEOF lotsof ; 116*3 = number of bytes in

 ;initializers

llotsof EQU LENGTHOF lotsof ; 3 = number of items

tlotsof EQU TYPE lotsof ; 110 = same as size for structure
 ; of type INFO

EXE-FORMAT SEPARATELY ASSEMBLED MODULES WITH SIMPLIFIED SEGMENT DIRECTIVES

To construct building blocks for large programs, it is often desirable to write programs that call procedures in separately assembled modules.

When separately assembled exe-format modules with simplified segment directives are linked all code segments are combined into one code segment and all data segments are combined into a single data segment. Thus all procedures in the modules are of type NEAR, and the DS register need to be initialized only once to access all the data.

Suppose a program calls PROCEDURE1 and PROCEDURE2 in a separately assembled module or in two separately assembled modules. In such a case the EXTERNDEF directive may be used to inform the assembler that the labels PROCEDURE1 and PROCEDURE2 are external. Using one directive, the EXTERNDEF statement, declaring NEAR procedures, has the form:

EXTERNDEF PROCEDURE1 : NEAR , PROCEDURE2 : NEAR

Alternatively, separate EXTERNDEF directives may be used:

EXTERNDEF PROCEDURE1 : NEAR

EXTERNDEF PROCEDURE2 : NEAR

Thus, the program has the following general structure:

EXTERNDEF PROCEDURE1 : NEAR , PROCEDURE2 : NEAR

.MODEL SMALL

.DATA

 . . .

.STACK 0400H

.CODE

ENTRY_POINT:

MOV AX , @DATA

; Initialize DS to the segment number of

MOV DS , AX

; the data segment

. . .

CALL PROCEDURE1

. . .

CALL PROCEDURE2

. . .

MOV AX , 4C00H

; Return to DOS

INT 21H

;

END ENTRY_POINT

If PROCEDUR1 and PROCEDURE2 are in the same separately assembled module, that module is a .asm file with the general structure:

.MODEL SMALL

.CODE

 PROCEDURE1 PROC NEAR

. . .

RET

 PROCEDURE1 ENDP

 PROCEDURE2 PROC NEAR

. . .

RET

 PROCEDURE2 ENDP

END

A separately assembled module that contains simplified segment directives and which will be called by other modules must end with an END directive which is not followed by an entry-point label. This is because execution starts in the calling module and not in the called module.

Example: Write an exe-format program which outputs:

THIS IS DISPLAYED BY THE CALLING MODULE

THIS IS DISPLAYED BY THE CALLED MODULE

THIS IS DISPLAYED BY THE CALLING MODULE

The string THIS IS DISPLAYED IN THE CALLING MODULE is defined in the data segment of the calling module. It is to be displayed by a procedure in the calling module. The other string is defined in the data segment of the called module. It is to be displayed by a procedure in that module.

The calling .ASM module is:

EXTERNDEF MAIN2 : NEAR

.MODEL SMALL

.STACK 0400H

.DATA

 MESSAGE DB ‘THIS IS DISPLAYED BY THE CALLING MODULE ’ , 0DH , 0AH , ‘$’

.CODE

 MAIN PROC

MOV AX , @DATA

; Initialize DS.

MOV DS , AX

;

MOV DX , OFFSET MESSAGE

CALL DISPLAY_STRING

; A call to a NEAR procedure.

CALL MAIN2

 ; A call to a NEAR procedure in a separate module

CALL DISPLAY_STRING

; A call to a NEAR procedure

MOV AX , 4C00H

; Return to DOS.

INT 21H

;

 MAIN ENDP

 DISPLAY_STRING PROC

PUSH AX

MOV AH , 09H

INT 21H

POP AX

RET

 DISPLAY_STRING ENDP

 END MAIN

The called .ASM module is:

.MODEL SMALL

.DATA

 STRING DB ‘THIS IS DISPLAYED BY THE CALLED MODULE’ , 0DH , 0AH, ‘$’

.CODE

 MAIN2 PROC NEAR

PUSH DX

MOV DX , OFFSET STRING

CALL STRING_DISPLAY

POP DX

RET

 MAIN2 ENDP

STRING_DISPLAY PROC NEAR

PUSH AX

MOV AH , 09H

INT 21H

POP AX

RET

STRING_DISPLAY ENDP

END

COM-FORMAT SEPARATELY ASSEMBLED MODULES WITH SIMPLIFIED SEGMENT DIRECTIVES

When separately assembled com-format modules with simplified segment directives are linked all code segments are combined into one code segment. Thus all procedures in the modules are of type NEAR.

Example: A module defines a string that is then displayed by a procedure in another module.

The calling module is:

 EXTERNDEF DISPLAY_STRING : NEAR

.MODEL TINY

.CODE

ORG 100H

ENTRY: JMP L1

 MESSAGE DB 'SOME PEOPLE ARE, UNFOTUNATELY, MORE EQUAL THAN OTHERS', '$'

L1:
LEA DX , MESSAGE

CALL DISPLAY_STRING

MOV AX , 4C00H

INT 21H

END ENTRY

The called module is:

.MODEL TINY

.CODE

 ORG 100H

 DISPLAY_STRING PROC NEAR

 PUSH AX

 MOV AH , 09H

 INT 21H

 POP AX

 RET

 DISPLAY_STRING ENDP

END

ASSEMBLING, LINKING, AND EXECUTING SEPARATELY ASSEMBLED MODULES

Suppose PROG1.ASM, PROG2.ASM, PROG3.ASM are three separately assembled modules to be executed as a single program. The steps are:

1. Assemble each of the files separately, in whatever order. Ignore any warning of a missing stack segment. This will create the object files:

PROG1.OBJ , PROG2.OBJ , and PROG3.OBJ
2. Link the three object files:

>LINK PROG1 PROG2 PROG3 , EXEFILE_NAME
 (for exe-format modules)

 or

 >LINK /TINY PROG1 PROG2 PROG3 , EXEFILE_NAME (for com-format modules)

.PROG1, PROG2, and PROG3 in the above command lines may appear in any order. If the EXEFILE_NAME is missing, the first object file name in the list is taken as the name of the .EXE file.

Note: If any of the object files is in a different directory from the directory in which the linker is located, then the full path of that file must be given.

3. Execute the generated .EXE file by the command:

>EXEFILE_NAME

 A full path may be required.

PASSING VALUES TO OR FROM A PROCEDURE USING THE STACK

Example: . . .

 MOV DX, OFFSET MESSAGE

 PUSH DX

 CALL DISPLAY_STRING

 . . .

 Here the offset of MESSAGE is passed to the DISPLAY_STRING procedure using the Stack.
This method uses the BP register to access the passed values. By default the BP register points to Stack data, thus it is ideal for accessing procedure parameters. The normal method of accessing parameters in the stack is to copy the value of SP (which always points to the top of the Stack) into BP, and then use offsets from the top of the Stack to access the parameters. In this method, the parameters of a procedure are pushed into the Stack before the call to that procedure.

The memory location at which a parameter is stored is accessed by a memory operand of the form:

[BP + number]

the segment : offset address of that memory location is:

SS : (BP + number)

Example: Write an exe-format program, with simplified segment directives, which passes the offset and length of a string, through the Stack, to a procedure DISPLAY_STRING in a separately assembled module. The procedure displays the string using DOS function 02H.

Solution: The calling .ASM file is:

EXTERNDEF DISPLAY_STRING : NEAR

.MODEL SMALL

.STACK 0400H

.DATA

 STRING DB "THIS IS A STRING"

.CODE

 START:MOV AX , @DATA

MOV DS , AX

MOV AX, OFFSET STRING

PUSH AX

MOV AX, LENGTHOF STRING

PUSH AX

CALL DISPLAY_STRING

MOV AX , 4C00H

INT 21H

END START

The called .ASM module is:

.MODEL SMALL

.CODE

DISPLAY_STRING PROC NEAR

PUSH BP

; Store the current value of BP

MOV BP , SP

; Make BP to point to the top of the Stack

MOV BX , [BP + 6]
; Copy Offset to BX

MOV AH, 02H

MOV CX, [BP + 4]
; Copy length to CX

 L2: MOV DL, [BX]

INT 21H

INC BX

LOOP L2

POP BP

; Restore the value of BP

RET 4

; Discard the two parameters

DISPLAY_STRING ENDP

END

Note: The state of the stack after the statement:

MOV BP , SP

is:

	
	
	 high address

	
	(Offset)high
	

	
	(Offset)low
	[BP + 6]

	
	(Length)high
	

	
	(Length)low
	[BP + 4]

	
	(IP)high
	

	
	(IP)low
	

	
	(BP)high
	

	BP (
	(BP)low
	(SP

	
	
	 low address

Note: For the RET of the form:

RET Number

Number = NumberOfParameters * 2 , if each parameter is 2 bytes in size. This formula is only valid if the Stack is not used to return values to the calling procedure. This form of RET is used to discard the passed parameters from the Stack on return from the procedure. For example, in the above example if only RET was used instead of RET 4 ,the state of the Stack would have been:

	
	
	 high address

	
	(Offset)high
	

	
	(Offset)low
	

	
	(Length)high
	

	
	(Length)low
	(SP

	
	(IP)high
	

	
	(IP)low
	

	
	(BP)high
	

	
	(BP)low
	 low address

	
	
	

To make the portion of the Stack occupied by Offset and Length usable in subsequent PUSH operations, the SP register has to be incremented by 4 in this example. That is achieved by giving the RET instruction the immediate operand 4. The state of the Stack will then be:

	
	
	(SP

	
	(Offset)high
	 high address

	
	(Offset)low
	

	
	(Length)high
	

	
	(Lenght)low
	

	
	(IP)high
	

	
	(IP)low
	

	
	(BP)high
	

	
	(BP)low
	 low address

	
	
	

The Stack may be used to return values from a procedure.

Example: Write a program fragment, with simplified segment directives, that passes two 16-bit values, through the Stack, to a procedure SUM2 in a separately assembled module. The procedure then returns the sum of the two values through the Stack.

Solution: A sample calling .ASM file is:

EXTERNDEF SUM2 : NEAR

.MODEL SMALL

.STACK 0400H

.DATA

 VAR1 DW 2C3BH

 VAR2 DW 32B0H

.CODE

START: MOV AX , @DATA

MOV DS , AX

PUSH VAR1

PUSH VAR2

CALL SUM2

POP CX

; Pop the returned value from the Stack.

. . .

; Manipulate the returned value in CX

. . .

MOV AX , 4C00H

INT 21H

END START

The called .ASM module is:

.MODEL SMALL

.CODE

SUM2 PROC NEAR

PUSH BX

;Preserve BX

PUSH BP

; Store the current value of BP

MOV BP , SP

; Make BP to point to the top of the Stack

MOV BX , [BP + 6]
; Copy VAR2 to BX

ADD BX , [BP + 8]
; Add VAR1 to BX

MOV [BP + 8] , BX
; Store the sum in the Stack

POP BP

; Restore the value of BP

POP BX

;Restore BX

RET 2

SUM2 ENDP

END

Note: In this example RET 2 is used because the sum stored in the Stack is not to be discarded. That value will be popped in the calling program.

ARITHMETIC INSTRUCTIONS

Pentium provides arithmetic instructions for: Addition (ADD, ADC), incrementation (INC), subtraction (SUB, SBB), decrementation (DEC), comparison (CMP), negation (NEG), multiplication (MUL, IMUL), and division (DIV, IDIV).

Each arithmetic instruction modifies one or more processor status flags.

Zero Flag (ZF): Tests the result of a flag modifying instruction whether zero or not. The Zero Flag is set if the result is zero; otherwise it is cleared.

The following conditional jump instructions may be used to react to the value of the zero flag: JZ, JE, JNZ, JNE

Carry Flag (CF): Tests for unsigned overflow. The carry flag is set if there is unsigned overflow; otherwise it is cleared.

The following conditional jump instructions may be used to react to the value of the carry flag: JC, JNC

Overflow Flag (OF): Tests for signed overflow. The overflow flag is set if there is signed overflow; otherwise it is cleared.

The following conditional jump instructions may be used to react to the value of the overflow flag: JO, JNO

Sign Flag (SF): This flag is useful only when dealing with signed numbers. The flag is set if the result is negative; otherwise it is cleared.

The following conditional jump instructions may be used to react to the value of the sign flag: JS (Jump if SF=1), JNS (Jump if no sign, i.e., SF=0)

Note: The processor does not know whether a given bit pattern represents a signed or unsigned number. It is up to the program logic to interpret a given bit pattern correctly, by using appropriate conditional jump instruction.

Auxiliary Flag (AF): The Auxiliary flag indicates whether an operation has produced a result that has generated a carry out of, or a borrow into, the low-order four bits of 8-, 16-, or 32-bit operands. The Auxiliary flag is set if there is such a carry or borrow; otherwise it is cleared.

Example:

MOV AL, 43

; 00101011B

ADD AL, 94

; 01011110B

 1

Carry out of 4 low order bits

00101011B

01011110B

10001001B
Thus the Auxiliary flag is set.

Note: There is no conditional jump instruction to test the value of the Auxiliary flag.

Parity Flag (PF): Only the low-order 8 bits of an 8-, 16-, or 32-bit operand are considered to set or clear the Parity flag. The parity flag is set if the low-order 8-bits contain an even number of 1 bits; otherwise it is cleared.

The following conditional jump instructions may be used to react to the value of the parity flag: JP, JPE (Jump if Parity Even, i.e., if PF=1), JNP, JPO (Jump if Parity Odd, i.e., if PF=0).

ADD - Arithmetic Addition

 Syntax:

ADD destination,
source

 Effect:

destination (destination + source

 Modifies flags: AF CF OF PF SF ZF

 Examples:

ADD EBP, EAX

ADD BYTE PTR [DI], 3

ADD BX, [EAX + 2*ECX]

ADC - Add With Carry

 Syntax:

ADC destination, source

 Effect:

destination (destination + source + CF

 Modifies flags:
AF CF OF SF PF ZF

ADC is used to add numbers that are wider than 16-bits in 8086 – 80286 processors, or wider than 32-bits in the 80386-80686 processors.

Example: Suppose we want to perform the following 32-bit addition in an 8086 – 80286 processor:

DX, CX (DX, CX + BX, AX

Then the addition can be performed as:

ADD
CX, AX

ADC
DX, BX

Example: Suppose we want to perform the following 64-bit addition in 80386 – 80686 processor:

EDX, ECX (EDX, ECX + EBX, EAX

The addition can be performed as:

ADD
ECX, EAX

ADC
EDX, EBX

INC - Increment

 Syntax:

INC destination

 Effect:

destination (destination + 1

 Modifies flags: AF OF PF SF ZF

This instruction is often used to increment indexes and therefore does not affect the carry flag.

Thus the following instructions will not set the carry flag:

MOV AL, 255

INC AL
; value in AL is now 0

SUB - Subtract

 Syntax:

SUB destination, source

 Effect:

destination (destination - source

 Modifies flags: AF CF OF PF SF ZF

SBB - Subtract with Borrow/Carry

 Syntax:

SBB destination, source

 Effect:

destination (destination – source - CF

 Modifies flags:
AF CF OF PF SF ZF

The most common use for this instruction is for subtractions that are wider than 16-bits in 8086 – 80286 microprocessors, or wider than 32-bits in 80386 – 80586 microprocessors. Wide subtractions require that borrows propagate through the subtraction.

Example: Perform the following 32-bit subtraction in an 8086 processor:

DX, CX (DX, CX – BX, AX

The subtraction can be performed as:

SUB
CX, AX

SBB
DX, BX

DEC - Decrement

 Syntax:

DEC destination

 Effect:

destination (destination - 1

 Modifies flags:
AF OF PF SF ZF

This instruction is often used to decrement indexes and therefore does not affect the carry flag.

NEG - Two's Complement Negation

 Syntax:

NEG destination

 Effect:

destination (0 - destination

 Modifies flags: AF CF OF PF SF ZF

This instruction is meaningful only with signed operands. The carry flag is always set, except when the destination is 0, in which case it is cleared.

Example:

; compute the absolute value of EAX

CMP EAX, 0

JGE DONE

NEG
EAX

DONE:

Note: The instructions:

MOV AL, -128

; minimum 8-bit signed value

NEG AL

will set the Overflow flag; but will not modify AL

Similarly, the instructions:

MOV AX, -32768
; minimum 16-bit signed value

NEG AX

will set the Overflow flag; but will not modify AX

CMP - Compare

 Syntax:

CMP destination, source

 Modifies flags: AF CF OF PF SF ZF

 Effect: Subtracts source from destination and updates the flags but does

 not save result. Flags can subsequently be checked for conditions.

If the destination is a 16-bit or 32-bit operand and source is a 8-bit immediate value, source is sign-extended to match the size of destination.

MULTIPLICATION INSTRUCTIONS (MUL AND IMUL)

Signed and unsigned multiplication lead to different results. Example, consider: 10000000B * 11111111B. Interpreted as unsigned numbers, the product is: 128 * 255 = 32640 = 0111 1111 1000 0000B. Interpreted as signed numbers, the product is: -128 * -1 = 128 = 0000 0000 1000 0000B.

Because signed and unsigned multiplication lead to different results, there are two multiplication instructions: MUL for unsigned multiplication and IMUL for signed multiplication:

	
	Instruction syntax
	Effect

	8-bit multiplication
	MUL Source8
	AX (AL * Source8

	
	IMUL Source8
	

	16-bit multiplication
	MUL Source16
	DX:AX (AX * Source16

	
	IMUL Source16
	

	32-bit multiplication
	MUL Source32
	EDX:EAX (EAX * Source32

	
	IMUL Source32
	

Where: (i) Source8 is either an 8-bit register or an 8-bit memory operand.

 (ii) Source16 is either a 16-bit general-purpose register or a 16-bit memory operand.

 (iii) Source32 is either a 32-bit general-purpose register or a 32-bit memory operand.

Two- and three-operand forms of IMUL
	Instruction Syntax
	Effect

	IMUL register1, register2
	register1 (register1 * register2

	IMUL register, memory
	register (register * memory

	IMUL register, immediate
	register (register * immediate

	IMUL register1, register2, immediate
	register1 (register2 * immediate

	IMUL register, memory, immediate
	register (memory * immediate

In these forms of IMUL, the register and memory operands must all be of the same size. The registers are general-purpose registers. The immediate operand is treated as signed, if it sign-extended to the size of the destination operand, if its size is smaller.

Examples:

IMUL ECX

; EDX:EAX (EAX * ECX

IMUL BL, CH, 7
; BL (CH * 7

Note:

(i) For multiplication of positive numbers, MUL and IMUL give the same results.

(ii) For IMUL, if the result of an 8-bit multiplication is 8-bits, it is sign-extended into the AH register. If the result of a 16-bit multiplication is 16-bits, it is sign-extended into the DX register. Similarly, if the result of a 32-bit multiplication is 32-bit, it is sign-extended into the EDX register.

Both MUL and IMUL leave all status flags undefined, except the Carry flag and the Overflow flag.

Multiplication overflow

1. Effect of MUL on the Carry Flag (CF) and the Overflow Flag (OF)

Both the Carry Flag and the Overflow Flag are cleared if the upper half of the result (AH for 8-bit MUL, DX for 16-bit MUL, and EDX for 32-bit MUL) is zero; otherwise they are set.

2. Effect of IMUL on the Carry Flag (CF) and the Overflow Flag (OF)
Both the Carry Flag and the Overflow Flag are cleared if the upper half of the result (AH for 8-bit IMUL, DX for 16-bit IMUL, and EDX for 32-bit IMUL) is the sign-extension of the lower half (AL for 8-bit IMUL, and DX for 16-bit IMUL); otherwise they are set.

For two- or three-operand IMUL, the CF and OF are cleared if the multiplication result is within the range, of signed numbers, of the destination operand; otherwise they are set

Thus, for both MUL and one-operand IMUL, if CF and OF are set it means that the product is too big to fit in the lower half of the destination (AL for 8-bit multiplication, AX for 16-bit multiplication, and EAX for 32-bit multiplication).

Note: Unlike an overflow condition resulting from ADD, SUB, NEG, SHL, or SAL, (which indicate an error in computation) an overflow condition resulting from MUL or IMUL may or may not indicate an error in computation. The interpretation of an error condition or otherwise depends on the application program being developed. For example, in the 16-bit decimal input algorithms developed latter in this chapter, a multiplication overflow indicates an error, because in those algorithms, the number input must fit in 16-bits.

Detection of Multiplication overflow in a program

Both signed and unsigned multiplication overflow can be detected by constructs of the form:

. . .

Multiplication instruction

JC MULTIPLICATION_OVERFLOW

. . .

JMP DONE

MULTIPLICATION_OVERFLOW:

. . .

DONE:
or
. . .

Multiplication instruction

JO MULTIPLICATION_OVERFLOW

. . .

JMP DONE

MULTIPLICATION_OVERFLOW:

. . .

DONE:

Example:

. . .

MOV AX , 50

MUL BX

JC MULTIPLICATION_OVERFLOW

. . .

JMP DONE

MULTIPLICATION_OVERFLOW:

. . .

DONE:

Example: In each of the program fragments below, determine whether multiplication overflow will occur or not. Find also the result in the destination operand(s):

(a) MOV AL , 05H

MOV BL , 10H

MUL BL

; AX := AL * BL = 0050H , CF := 0 , OF := 0 , there is no overflow

(b) .DATA

 VAR1 DW 2000H

 VAR2 DW 0010H

. . .

MOV AX , VAR1

MUL VAR2
; DX:AX := AX * VAR2 = 0002 0000H , CF := 1 , OF := 1 , there is overflow

(c) MOV AL , 1

MOV BL , -1

IMUL BL
; AX := -1 = 11111111 11111111B , CF := 0 , OF := 0 , there is no overflow

; the 8-bit result 11111111B is sign-extended into the AH register.

(d) MOV AX , 10

MOV CX , -48

IMUL CX
; DX:AX := -480 = FFFF FE20H , CF := 0 , OF := 0 , there is no overflow

; the 16-bit result FE20H is sign-extended into the DX register.

Example: Assuming that W and Y are word variables holding signed values, translate W := 5 * W - 12 * Y into an 8086 program fragment. The fragment must test for signed overflow.

MOV AX , 5

IMUL W

; AX := 5 * W

JO OVERFLOW

MOV W , AX

; W := 5 * W

MOV AX , 12

IMUL Y

; AX := 12 * Y

JO OVERFLOW

SUB W , AX

; W := 5 * W - 12 * Y

JO OVERFLOW

. . .

JMP DONE

OVERFLOW:

. . .

DONE:

Example: Perform an unsigned multiplication on a byte variable VAR1 and a word variable VAR2, and store the result in a double-word variable VAR3 :

.DATA

 VAR1 DB 20H

 VAR2 DW 1234H

 VAR3 DD ?

. . .

MOV AX , VAR2

MOV BH , 0

MOV BL , VAR1

MUL BX

MOV WORD PTR VAR3 , AX

MOV WORD PTR VAR3 + 2 , DX

. . .

Example: Let N be a word variable holding an unsigned value. Assuming no multiplication overflow, write a program fragment to leave the factorial of N in the AX register.

MOV AX , 1

MOV CX , N

JCXZ EXIT

TOP:
MUL CX

LOOP TOP

EXIT:
DIVISION INSTRUCTIONS (DIV AND IDIV)

DIV is used for unsigned division, and IDIV for signed division.

	
	Instruction syntax
	Effect

	8-bit division
	DIV Divisor8

	 AL

Divisor8 AX

 - Divisor8 * AL

 AH

	
	IDIV Divisor8
	

	16-bit division
	DIV Divisor16

	 AX
Divisor16 DX:AX

 - Divisor16 * AX
 DX

	
	IDIV Divisor16
	

	32-bit division
	DIV Divisor32

	 EAX
Divisor32 EDX:EAX

 - Divisor32 * EAX
 EDX

	
	IDIV Divisor32
	

Where: (i) Divisor8 is either an 8-bit register or an 8-bit memory operand.

 (ii) Divisor16 is either a 16-bit general-purpose register or a 16-bit memory operand.

 (iii) Divisor32 is either a 32-bit general-purpose register or a 32-bit memory operand.

Note:

(i) If both dividend and divisor are positive, DIV and IDIV give the same result.

(ii) For a signed division, the remainder, if not zero, has the same sign as the dividend.
(iii) The division instructions do not set flags to any useful values. They may destroy previously set values of CF, OF, SF and ZF flags.

Initialisation of the AH register before an 8-bit division
1. For a DIV instruction, the AH register must be initialised to 0 if the actual dividend is a byte; however if the actual dividend is a word then no initialisation is required.

Example:
MOV AL , BYTE_VAR

MOV AH , 0

; AH must be initialised to 0

MOV BL , 5

DIV BL

Example:
MOV AX , 20

; no initialisation of AH required

MOV CL , 4

DIV CL

Example: Read an ASCII digit, convert it to a numeric value, and then divide it by 3:

MOV AH , 01H

INT 21H

SUB AL , 30H

MOV AH , 0

; initialise AH to 0

MOV BL , 3

DIV BL

Note: The instruction MOVZX (Move with Zero Extension) may also be used to initialise AH to zero:

MOVZX AX, BYTE_VAR

MOV BL, 5

DIV BL

2. For IDIV instruction, the sign-bit of AL must be extended throughout the AH register. This is done by the instruction:

CBW

; Convert Byte to Word

Example:
MOV AL , VAR1

CBW

MOV BL , -7

IDIV BL

Note: If CBW instruction is not used to initialise AH before an 8-bit, signed division, the result of the division may be wrong. Consider:

MOV AX , -48

MOV BL , 5

IDIV BL

48d = 30H = 00110000B

 2's complement

-48d
 = 11010000B

Thus AX will contain 0000000011010000B , which is +208 and not -48. However, if the division is performed as:

MOV AX , -48

CBW

MOV BL , 5

IDIV BL

Then the instruction CBW extends the sign bit of AL into AH. Hence, AX will contain 1111111111010000B i.e., FFD0H which is the 16-bit representation of -48.

The instruction MOVSX (Move with Sign Extension) may also be used to initialise AH:

MOVSX AX, -48

MOV BL, 5

IDIV BL

Initialisation of the DX register before a 16-bit division
1. For a 16-bit DIV instruction, the DX register must be initialised to 0.

Example:
.DATA

 DIVIDEND DW 8003H

 DIVISOR DW 100H

. . .

MOV DX , 0

MOV AX , DIVIDEND

DIV DIVISOR

. . .

2. For a 16-bit IDIV instruction, the sign-bit of AX must be extended throughout the DX register. This is done by the instruction:

CWD

; Convert Word to Double-word

Example:
MOV AX , -12

; AX := FFF4H

CWD

; DX:AX := FFFF FFF4H

MOV BX , 7

IDIV BX

; AX := -1 = FFFFH , DX := -5 = FFFBH

Initialisation of the EDX register before a 32-bit division
3. For a 32-bit DIV instruction, the EDX register must be initialised to 0.

Example:
.DATA

 DIVIDEND DWORD 8003FFBCH

 DIVISOR DWORD 10000000H

. . .

MOV EDX , 0

MOV EAX , DIVIDEND

DIV DIVISOR

. . .

4. For a 32-bit IDIV instruction, the sign-bit of EAX must be extended throughout the EDX register. This is done by the instruction:

CDQ

; Convert Double-Word to Quad-word

Example:
MOV EAX , 8FBA2FECh

CDQ

MOV EBX , 2FFFFFFFh

IDIV EBX

Division overflow

If the quotient of either an 8-bit or a 16-bit division is too big to fit in an8-bit or a 16-bit register, respectively, then division overflow occurs. The CPU then automatically invokes software interrupt 00H and the program terminates or the system hangs.

1. Unsigned division overflow

Unsigned division overflow will only occur if the divisor is below or equal to the high-order register in the dividend (AH for 8-bit division, DX for 16-bit division, and EDX for 32-bit division).

Example: The sequence:
MOV AX , 0200H

MOV BL , 02H

DIV BL

Causes division overflow, because BL (AH. Note that the quotient in this case is 100H i.e., 256 which is above 255, the maximum 8-bit unsigned value.

Note: If AH is initialised to 0 before an unsigned division, overflow can only occur if the divisor has the value zero.

To avoid an 8-bit, unsigned, division-overflow in a program, a sequence like the one below can be used:

CMP Divisor8 , AH

JBE DIV_OVERFLOW

DIV Divisor8

. . .

JMP DONE

DIV_OVERFLOW:

. . .

DONE:

To avoid a 16-bit, unsigned, division-overflow in a program, a sequence like the one below can be used:

CMP Divisor16 , DX

JBE DIV_OVERFLOW

DIV Divisor16

. . .

JMP DONE

DIV_OVERFLOW:

. . .

DONE:

2. Signed division overflow

For an 8-bit signed division in which the AH register is initialised by the instruction CBW, overflow can only occur if either the divisor has the value zero or if the divisor has the value -1 and the dividend in AL is –128 (i.e., 80H, the minimum 8-bit signed value). For a 16-bit signed division in which the DX register is initialised by the instruction CWD, overflow can only occur if either the divisor has the value zero or if the divisor has the value -1 and the dividend in AX is –32768 (i.e., 8000H, the minimum 16-bit signed value). For a 32-bit signed division in which the EDX register is initialised by the instruction CDQ, overflow can only occur if either the divisor has the value zero or if the divisor has the value –1 and the dividend in EAX is –2147483648 (i.e., 80000000H, the minimum 32-bit signed value).

To avoid an 8-bit, signed, division-overflow in a program, a sequence like the one below can be used:

MOV AL , Dividend

CBW

CMP Divisor8 , 0

JE IDIV_OVERFLOW

CMP Divisor8 , -1

JNE L1

CMP AL , -128

JNE L1

JMP IDIV_OVERFLOW

 L1:
IDIV Divisor8

. . .

JMP DONE

IDIV_OVERFLOW:

. . .

DONE:

To avoid a 16-bit, signed, division-overflow in a program, a sequence like the one below can be used:

MOV AX , Dividend

CWD

CMP Divisor16 , 0

JE IDIV_OVERFLOW

CMP Divisor16 , -1

JNE L1

CMP AX , -32768

JNE L1

JMP IDIV_OVERFLOW

 L1:
IDIV Divisor16

. . .

JMP DONE

IDIV_OVERFLOW:

. . .

DONE:

DECIMAL I/O ROUTINES

1. Unsigned Decimal Output (Algorithm#1)

Write a procedure to display the unsigned contents of AX in decimal.

Assuming that num is the unsigned number to be displayed in decimal, the pseudo-code algorithm is:

count := 0 ;

do

 {

 quotient := num / 10 ;

 remainder := num % 10 ;

 PUSH the remainder in the stack ;

 num := quotient ;

 count := count + 1 ;

 }while(quotient (0) ;

for (count times)do

 {

POP remainder from the stack ;

Convert remainder to ASCII ;

Display: remainder ;

 } ;

 STOP ;

This pseudo-code algorithm can be refined to the following pseudo-code algorithm:

count := 0 ;

do

 {

 clear DX to zero ;

 divide AX by 10 ;

 PUSH the remainder DX in the stack ;

 count := count + 1 ;

 }while(AX (0) ;

for (count times)do

 {

POP remainder DX from the stack ;

DL := DL + 30H ;

Note, in this case DH is always zero

Display: DL ;

 }

STOP ;

The required procedure is then:

WRITE_UNSIGNED_DECIMAL16 PROC uses AX BX CX DX

 ; Displays the contents of AX as an unsigned decimal value.

MOV CX , 0

; counter

MOV BX , 10

; divisor

@1:
MOV DX , 0

; initialise the high-order register of the dividend DX:AX

DIV BX

; AX := quotient , DX := remainder

PUSH DX

; save the remainder

INC CX

CMP AX , 0

; compare the quotient with zero

JA @1

; Display

MOV AH , 02H

@2:
POP DX

; pop a remainder

ADD DL , 30H

; convert to ASCII

INT 21H

LOOP @2

RET

WRITE_UNSIGNED_DECIMAL16 ENDP

Note:

(a) The above procedure will display the unsigned contents of AX in binary if the divisor is 2.

(b) The XLAT instruction can be used in conjunction with the above procedure to display an unsigned number in any base in the range 2 to 16. This is done in procedure WRITE_UNSIGNED on the next page.

2. Unsigned Output.

WRITE_UNSIGNED PROC uses AX BX CX DX DS

 ; Displays the unsigned contents of AX using the base in SI. The base must be in the range 2 to 16.

MOV DX , CS

MOV DS , DX

MOV CX , 0

CMP SI , 2

JB INVALID_BASE

CMP SI , 16

JA INVALID_BASE

@1:
MOV DX , 0

DIV SI

PUSH DX

INC CX

CMP AX , 0

JA @1

LEA BX , HEXDIGITS

@2:
POP AX

XLAT

MOV DL , AL

MOV AH , 02H

INT 21H

LOOP @2

CMP SI , 2

JE BINARY

CMP SI , 8

JE OCTAL

CMP SI , 10

JE DECIMAL

CMP SI , 16

JE HEXADECIMAL

JMP EXIT

 INVALID_BASE:
MOV AH , 09H

LEA DX , ERROR_MSG

INT 21H

JMP EXIT1

 BINARY:
MOV DL , 'B'

JMP EXIT2

 OCTAL:
MOV DL , 'o'

JMP EXIT2

 DECIMAL:
MOV DL , 'd'

JMP EXIT2

 HEXADECIMAL:
MOV DL , 'H'

 EXIT2:
MOV AH , 02H

INT 21H

 EXIT1:

RET

 HEXDIGITS DB '0123456789ABCDEF'

 ERROR_MSG DB 0DH, 0AH, 'ERROR - INVALID BASE', '$'

WRITE_UNSIGNED ENDP

3. Signed Decimal Output.

Write a procedure to output the signed contents of AX.

The pseudo-code algorithm is:

if(AX (0)then

 {

if(AX = -32678)then

 {

 display: "-32678" ;

 STOP ;

 }

else

 {

 display: '-' ;

 NEG AX ;

 }

 endif ;

 }

endif ;

count := 0 ;

do

 {

 clear DX to zero ;

 divide AX by 10 ;

 PUSH the remainder DX in the stack ;

 count := count + 1 ;

 }while(AX (0) ;

for (count times)do

 {

POP remainder DX from the stack ;

DL := DL + 30H ;

Note, in this case DH is always zero

Display: DL ;

 }

STOP ;

Note: In this algorithm, the case of AX having the value -32678 is special in that we cannot perform the operation NEG AX without causing unsigned overflow.

The required procedure is:

WRITE_SIGNED_DECIMAL16 PROC uses AX BX CX DX

 ; Displays the contents of AX as a signed decimal value.

CMP AX , 0

JGE @2

CMP AX , -32768

; minimum 16-bit unsigned value

JNE @1

PUSH DS

MOV DX , CS

MOV DS , DX

MOV AH , 09H

LEA DX , MINVALUE

INT 21H

POP DS

JMP EXIT1

@1:
PUSH AX

MOV AH , 02H

MOV DL , '-'

INT 21H

POP AX

NEG AX

@2:
MOV CX , 0

; counter

MOV BX , 10

; divisor

@3:
CWD

; sign-extend AX into DX

IDIV BX

PUSH DX

; save the remainder

INC CX

CMP AX , 0

JG @3

; Display

MOV AH , 02H

@4:
POP DX

; pop a remainder

ADD DL , 30H

; convert to ASCII

INT 21H

LOOP @4

EXIT1:

RET

 MINVALUE DB '-32768', '$'

WRITE_SIGNED_DECIMAL16 ENDP

4. Unsigned Decimal Input

Write a procedure to read an unsigned 16-bit decimal number in the BX register. The procedure should set the Carry Flag if there is overflow or if no value is entered. For an invalid input the procedure should beep and give the user the chance of entering another value.

A number such as 53248 is read as a sequence of ASCII digits '5', '3', '2', '4', '8'. Each ASCII digit in the sequence must then be converted to a numeric value, multiplied by an appropriate factor 10i (i ({0, 1, 2, 3, 4}), and finally summed up:

'5' '3'
 '2'
 '4'

 '8'

-30H
 -30H

 -30H

 -30H
 -30H

 (5 * 10000)
 + (3 * 1000) + (2 * 100) + (4 * 10) + 8

Assuming valid input, the pseudo-code algorithm to do the reading is:

sum := 0 ;

multiplier := 10000 ;

for(5 times)do

; a 16-bit decimal value has a maximum of 5 digits

 {

Read: ch ;

ch := ch - 30H

; convert to numeric value

sum := sum + ch * multiplier ;

multiplier := multiplier / 10 ;

 };

STOP ;

The disadvantage with this algorithm is that 5 digits must be input for each number read. So, for example, the number 6 must be input as 00006. However, using Horner's factorisation, an expression of the form:

(5 * 10000) + (3 * 1000) + (2 * 100) + (4 * 10) + 8

can be factorised to:

10 * (10 * (10 * (5 * 10 + 3) + 2) + 4) + 8

Assuming no invalid input, the pseudo-code algorithm to read an unsigned decimal number using this factorised form is:

count := 0 ;

sum := 0 ;

do

 {

Read: ch ;

if(ch = 0DH)then

 break ;

endif ;

ch := ch - 30H ;

sum := 10 * sum ;

sum := sum + ch ;

count := count + 1 ;

 }while(count (5) ;

STOP ;

Refining the previous algorithm to incorporate input validity checking we have:

 count := 0 ;

sum := 0 ;

do

 {

 Read: ch ;

 if(ch = 0DH)then

goto exit ;

 endif ;

 if(ch ('0' and ch ('9')then

 {

count := count + 1 ;

ch := ch - 30H ;

sum := 10 * sum ;

if(UnsignedMultiplicationOverflow)then

 goto errorLabel ;

endif ;

sum := sum + ch ;

if(UnsignedAdditionOverflow)then

 goto errorLabel ;

endif ;

 }

 else

 {

 Beep ;

 Move the cursor back ;

 }

 endif ;

 }while(count (5) ;

exit:

if(count = 0)then

 Display: “ERROR – NO VALUE OR NO VALID VALUE ENTERED”

 STC

; set Carry flag (No input)

else

 CLC

; clear Carry flag

endif

goto done ;

errorLabel:
Display: “ERROR - UNSIGNED OVERFLOW”

STC ;

done:

STOP ;

The previous algorithm is translated into the following procedure:

READ_UNSIGNED_DECIMAL16 PROC uses AX CX DX

 comment @

Reads an unsigned decimal number in the range 0 - 65535 in BX. The procedure rejects invalid input by beeping and backspacing the cursor. If there is unsigned overflow or if no value or no valid value is entered before the enter key is pressed, an appropriate error message is displayed and the Carry flag is set.

 @

MOV BX , 0

MOV CX , 0

 L1: MOV AH , 01H

INT 21H

CMP AL , 0DH

JE END_DO_WHILE

CMP AL , '0'

JB INVALID

CMP AL , '9'

JA INVALID

INC CX

SUB AL , 30H

MOV AH , 0

PUSH AX

MOV AX , 10

MUL BX

POP BX

JC OVERFLOW

ADD BX , AX

JC OVERFLOW

JMP NEXT

INVALID: MOV AH , 02H

; beep

MOV DL , 07H

;

INT 21H

;

MOV DL , 08H

; backspace

INT 21H

;

NEXT: CMP CX , 5

JB L1

END_DO_WHILE:

CMP CX , 0

JE L2

CLC

JMP DONE

 L2: PUSH DS

MOV AX , CS

MOV DS , AX

MOV AH , 09H

LEA DX , NO_VALUE_MSG

INT 21H

POP DS

STC

JMP DONE

OVERFLOW:

PUSH DS

MOV AX , CS

MOV DS , AX

MOV AH , 09H

LEA DX , OVERFLOW_MSG

INT 21H

POP DS

STC

DONE: RET

 OVERFLOW_MSG DB 0DH, 0AH, 'ERROR - UNSIGNED OVERFLOW','$'

 NO_VALUE_MSG DB 0DH, 0AH, 'ERROR - NO VALUE OR NO VALID VALUE ENTERED','$'

READ_UNSIGNED_DECIMAL16 ENDP

5. Signed Decimal Input

Write a procedure to read a signed 16-bit decimal number in the BX register. The procedure should set the Carry Flag if there is overflow or if no value is entered. For an invalid input the procedure should beep and give the user the chance of entering another value.

Assuming:

(a) the signed number to be read is preceded by a +ve or -ve sign,

(b) no invalid input,

(c) the minimum 16-bit, signed value, i.e., -32768, is not read,

the pseudo-code algorithm is:

count := 0 ;

sum := 0 ;

negative := 0 ;

Read: ch ;

if(ch = '-')then

 negative := 1 ;

endif ;

do

 {

Read: ch ;

if(ch = 0DH)then

 break ;

endif ;

ch := ch - 30H ;

sum := 10 * sum ;

sum := sum + ch ;

count := count + 1 ;

 }while(count (5) ;

if(negative = 1)then

 sum = -sum ;

endif ;

STOP ;

The above algorithm cannot be used to read the value -32768; because the line:

sum := sum + ch ;

in the algorithm, will translate to:

sum := 32760 + 8

This addition causes signed addition overflow, because the maximum 16-bit, signed value is 32767. To take care of this special case, the algorithm is modified as shown in the next page:

count := 0 ;

sum1 := 0 ;

sum2 := 0 ;

negative := 0 ;

Read: ch ;

if(ch = '-')then

 negative := 1 ;

endif ;

do

 {

 Read: ch ;

 if(ch = 0DH)then

 break ;

 endif ;

 ch := ch - 30H ;

 sum1 := 10 * sum2 ;

 if((sum1 = 32760) and (ch = 8) and (negative = 1))then

 {

 sum2 := (-32760) + (-8) ;

 goto done ;

 }

 endif ;

 sum2 := sum1 + ch ;

 count := count + 1 ;

}while(count (5) ;

if(negative = 1)then

 sum2 = -sum2 ;

endif ;

done:

STOP ;

Refining the previous algorithm to incorporate input validity checking and to take care of the fact that a positive value may be entered without being preceded by a positive sign we have:

count := 0 ;

sum1 := 0 ;

sum2 := 0 ;

negative := 0 ;

assume the value to be read is not negative

Read: ch ;

if(ch = '-')then

 {

 negative := 1 ;

 Read: ch ;

 }

else if(ch = '+')then

 Read: ch ;

endif ;

 while(ch (0DH)do

 {

 if(ch ('0' and ch ('9')then

 {

count := count + 1 ;

ch := ch - 30H ;

sum1 := 10 * sum2 ;

if(SignedMultiplicationOverflow)then

 goto errorLabel ;

endif ;

if((sum1 = 32760) and (ch = 8) and (negative = 1))then

 { sum2 = -sum1 + -ch ;

 CLC ;

 goto done ;

 } ;

sum2 := sum1 + ch ;

if(SignedAdditionOverflow)then

 goto errorLabel ;

endif ;

 }

 else

 {

 Beep ;

 Move the cursor back ;

 }

 endif ;

 if(count = 5)then

goto exit ;

 endif ;

 Read: ch ;

 }

endwhile ;

exit:

if(count = 0)then

 Display: “ERROR – NO VALUE OR NO VALID VALUE ENTERED”

 STC

; set Carry flag (No input)

else

 if(negative = 1)then

sum2 = -sum2 ;

 endif ;

 CLC

; clear Carry flag

endif

goto done ;

errorLabel:
Display: “ERROR - SIGNED OVERFLOW”

STC ;

done:
STOP ;

The previous algorithm is translated into the following procedure:

READ_SIGNED_DECIMAL16 PROC uses AX CX DX SI

comment @

Reads a signed decimal number in the range -32768 to +32757 in BX. The procedure rejects invalid input by beeping and backspacing the cursor. If there is signed overflow or if no value or no valid value is entered before the enter key is pressed, an appropriate error message is displayed and the Carry flag is set.

 @

MOV BX , 0

MOV SI , 0

MOV CL , 0

MOV AH , 01H

INT 21H

CMP AL , '-'

JE MINUS

CMP AL , '+'

JE PLUS

JMP L1

 MINUS:

MOV CL , 1

 PLUS:

MOV AH , 01H

INT 21H

 L1:
CMP AL , 0DH

JE EXIT

CMP AL , '0'

JB INVALID

CMP AL , '9'

JA INVALID

INC SI

SUB AL , 30H

MOV AH , 0

PUSH AX

MOV AX , 10

IMUL BX

POP BX

JO OVERFLOW

CMP AX , 32760

JE L2

JMP L3

L2: CMP BL , 8

JNE L3

CMP CL , 0

JE L3

NEG AX

NEG BX

ADD BX , AX

CLC

JMP DONE

L3:
ADD BX , AX

JO OVERFLOW

JMP NEXT

INVALID: MOV AH , 02H

; beep

MOV DL , 07H

;

INT 21H

;

MOV DL , 08H

; backspace

INT 21H

;

NEXT: CMP SI , 5

JE EXIT

MOV AH , 01H

INT 21H

JMP L1

EXIT:

CMP SI , 0

JE NO_VALUE_ENTERED

JA L4

STC

JMP DONE

L4:
CMP CL , 1

JE L5

CLC

JMP DONE

 L5:
NEG BX

CLC

JMP DONE

OVERFLOW:

PUSH DS

MOV DX , CS

MOV DS , DX

MOV AH , 09H

LEA DX , OVERFLOW_MSG

INT 21H

POP DS

STC

JMP DONE

NO_VALUE_ENTERED:

PUSH DS

MOV DX , CS

MOV DS , DX

MOV AH , 09H

LEA DX , NO_VALUE_MSG

INT 21H

POP DS

STC

DONE:

RET

 OVERFLOW_MSG DB 0DH, 0AH, 'ERROR - SIGNED OVERFLOW','$'

 NO_VALUE_MSG DB 0DH, 0AH, 'ERROR - NO VALUE OR NO VALID VALUE ENTERED','$'

READ_SIGNED_DECIMAL16 ENDP

INTERRUPTS

Interrupts provide a mechanism of transferring control from a foreground process (the current executing program) to an Interrupt Service Routine. When such a transfer is initiated by the hardware in response to special internal or external conditions, a hardware interrupt is said to have occurred. External hardware interrupts are generated by peripheral devices and are the main mechanism used by these devices to get the attention of the processor. Certain external hardware interrupts are maskable in that they may be disabled by clearing the Interrupt enable flag (IF) in the flags register. External hardware interrupts that cannot be disabled by clearing IF are called non-maskable interrupts. Typically, non-maskable interrupts are hardware events that must be responded to immediately by the CPU. An example of such an event is the occurrence of a memory or I/O parity error.

Internal hardware interrupts are hardware interrupts that are generated internally to the processor, generally on the occurrence of an error condition. A software interrupt occurs when an INT instruction is executed. With a software interrupt, the type of the interrupt is specified in the INT instruction. With hardware interrupts, the type of the interrupt is supplied by the interrupting hardware. In both cases, when an interrupt occurs, the addresses specified in the related interrupt vector are used to set the CS and IP registers with the starting segment : offset address of the associated interrupt service routine. It is this routine which performs whatever functions necessary is servicing the interrupt. The same sequence of events as was explained for the mechanism of the INT instruction, happens in the case of hardware interrupts.

There are 256 possible interrupt types available on the IBM PC with certain of these reserved for various system purposes, and certain available for user-defined interrupt service routines.

[image: image11]
External Interrupts

The external interrupt facility is used in the IBM PC to alert the processor that a peripheral device requires the CPU’s attention. The 8086/8088 microprocessor has two control lines that can signal interrupts. The lines are designated as INTR (Interrupt Request) and NMI (Non-maskable Interrupt). Maskable interrupts use the INTR signal line, and non-maskable interrupts use the NMI signal line.

Maskable Interrupts (INT 08H to INT 0FH)

All I/O devices are connected indirectly to the INTR control line, through the 8259A Interrupt Controller chip. The 8259A has eight interrupt lines leading into it, labeled IR0 to IR7. Each line is connected to the interrupt request pins of a particular I/O device. The following table shows the interrupts controlled by the 8259A:

	
	INTERRUPT#
	DEVICE

	IRQ0
	08H
	Timer chip

	IRQ1
	09H
	Keyboard

	IRQ2
	0AH
	Reserved

	IRQ3
	0BH
	Communications

	IRQ4
	0CH
	Serial interface (communications)

	IRQ5
	0DH
	Disk

	IRQ6
	0EH
	Diskette

	IRQ7
	0FH
	Printer

When an I/O device generates an interrupt, it asserts its IRi input to the 8259A. The 8259A in turn asserts the control line INTR on behalf of the I/O device. This arrangement allows the 8259A to enforce priorities if several I/O devices generate interrupts at the same time. Device 0, the timer, is given the highest priority. Device 7, the printer, if one is present, is given the lowest priority. The numbers 0, 1, 2, 3, 4, 5, 6, and 7 are called the interrupt levels of the I/O devices.

After the 8259A asserts the INTR line and the CPU notices this assertion, the CPU, if the Interrupt enable flag is set, asserts the interrupt acknowledge line (INTA) in the control bus. This signal informs the 8259A that the CPU is willing to accept the interrupt. After receiving the signal, the 8259A will send to the CPU the interrupt level of whichever device has requested the interrupt (or, if there were several such devices, whichever device the 8259A decided should be given priority). The CPU determines the location of the Interrupt Service Routine of the hardware interrupt it is servicing from the interrupt level number.

When an I/O device interrupt arrives while another is being serviced, the 8259A holds the interrupt until completion of the current interrupt. The 8086/8088 signals the 8259A that it has finished servicing an interrupt by placing an end of interrupt (EOI) character (20H) in the 8259A’s interrupt command register (located at Port 20H). After receiving the EOI signal, the 8259A can request the servicing of another interrupt, if any is pending. The 8259A is designed such that once it sends an interrupt request to the CPU, by asserting the INTR line in the control bus, it will not send an interrupt of lower or equal priority until it receives the EOI code.

Disabling maskable interrupts

Maskable interrupts can be disabled by clearing the Interrupt Enable Flag. This can be done by the instruction CLI (Clear Interrupt enable flag). To enable maskable interrupts, the instruction STI (Set Interrupt enable flag) can be used. It is also possible to disable interrupts associated with individual I/O devices by accessing the interrupt mask register in the 8259A. This register is accessed through port 21H. The interrupt mask register allows enabling or disabling of interrupts in each of the eight lines labeled IRQ0 to IRQ7. A bit value 0 indicates that an interrupt line is enabled, whereas a bit value 1 indicates the line is disabled.

	7
	6
	5
	4
	3
	2
	1
	0

	
	
	
	
	
	
	
	

 IRQ7

IRQ6
. . .

 IRQ0

Example: To disable line for printer interrupt (IRQ7) without affecting the settings of the other lines, execute the instructions:

IN AL , 21H

; Read interrupt mask register

OR AL , 10000000B

; set bit 7

OUT 21H , AL

; modify the interrupt mask register

8086 PORT I/O

Input/Output devices are connected to the system bus through interfaces. Interfaces contain 8-bit or 16-bit registers called ports. A typical interface may have three or more ports associated with it:

1. A control port, the setting of which determines if the interface is to send or receive data.

2. A data port, which holds the data to be transmitted or the data received.

3. A status port, which provides status information about the interface.

Any interface will have at least a data port, but the functions of status port and control port may be combined into one port for a simple interface. Sophisticated interfaces may have several control and status ports. A data port may be for input, output, or input-output.

The 8086/8088 uses 16-bit addresses to address I/O ports. Since 16 address lines are used to address I/O ports, the 8086/8088 address space consists of 65536 I/O ports with addresses ranging from 0000H to 0FFFFH. The 8086/8088 signals that the address on the address bus is for an I/O port instead of a memory location by switching the IO/M control line to the 1 logic line. The control lines IORC (Read I/O port) and IOWC (Write I/O port) determine whether a read or a write operation is to be performed.

It is possible to use the IN and OUT instructions to handle I/O directly at the port level. The IN instruction transfers 8-bit or 16-bit data from a port to the AL or the AX register respectively. The OUT instruction transfers 8-bit or 16-bit data from the AL or the AX register, respectively, to an 8-bit or 16-bit port. Each of IN and OUT instructions has two forms: fixed-port format, and variable-port format. In fixed-port format, the port to be addressed is specified by an 8-bit address that is located in the instruction itself. Instructions using fixed-port format have the form:

IN AL , PortNumber

; AL (Data8 from Port whose address is PortNumber

IN AX , PortNumber

; AX (Data16 from Port whose address is PortNumber

OUT PortNumber , AL

; Port (Data8 from AL to Port whose address is PortNumber

OUT PortNumber , AX

; Port (Data16 from AX to Port whose address is PortNumber

where PortNumber is a constant in the range 00H to 0FFH, specifying a port address. With this form, up to 256 ports can be addressed. For the 8-bit fixed-port I/O instructions, the 8-bit port address is zero-extended into a 16-bit address.

In the variable-port format, the port address is specified by a 16-bit address located in the DX register. In this case all the 65536 ports can be addressed. Instructions using variable-port format have the form:

IN AL , DX

; AL (Data8 from Port whose address is in DX

IN AX , DX

; AX (Data16 from Port whose address is in DX

OUT DX , AL

; Port (Data8 from AL to Port whose address is in DX

OUT DX , AX

; Port (Data16 from AX to Port whose address is in DX

Example1: Write instructions to output the data FFH to port ABH.

MOV AL , 0FFH

OUT 0ABH , AL

Example2: Write instructions to output the data FEH to an output port with port address B000H.

MOV DX , 0B000H

MOV AL , 0FEH

OUT DX , AL

Example3: Write instructions to read data from two 8-bit ports at addresses AAH and A9H respectively, and then output the data as a word to a 16-bit port with address B000H.

IN AL , 0AAH

; AL (Data8 from Port 0AAH

MOV AH , AL

; AH (Data8 from Port 0AAH

IN AL , 0A9H

; AL (Data8 from Port 0A9H

MOV DX , 0B000H

; DX (Port address 0B000H

OUT DX , AX

; Port _0B000H (AX

Parallel and serial ports

There are two types of I/O ports: parallel and serial. Thus, an I/O device can be interfaced to a computer with either a parallel or a serial connection. The former transmits several bits in parallel, while the latter transmits only one bit at a time. Parallel ports are usually used to connect nearby devices. Serial connections are common for many types of devices, and a given computer may have several serial ports.

The keyboard interfaces the computer through ports 60H (keyboard data port), 61H (the keyboard control port), and port 62H (the keyboard status port). The speaker is controlled by the same 8255 chip that is used to control the keyboard. Bits 0 and 1 of port 61H, the keyboard control port, are wired to the speaker. The parallel printer adapter LPT1 interfaces the computer through ports 3BCH (printer data port), 3BDH (printer status port), and port 3BEH (printer control port). The serial port COM1 has ports from 3F8H to 3FFH. The 8253 timer chip has port 40H to port 43H.
Decode

�
�

INTERUPTS

HARDWARE INTERUPTS

SOFTWARE INTERUPTS

EXTERNAL

INTERNAL

MASKABLE

NON-MASKABLE

SYSTEM

USER-DEFINED

DOS INTERUPTS

BIOS INTERUPTS

36

_142107188.unknown

_968729457.unknown

