KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS-201 Introduction to Computer Science

Lab 13: Threads

Objectives: In this lab, the following topics will be covered

1. About Threads
2. Creating your first thread: Counter
3. Using threads:

· Timer application.

· Animation.
4. 2D Transformation

5. Exercises.
1. Threads
A thread can be thought as an execution path within a process. A process (i.e. a Java application) will at least have one running thread, the thread main. Up to this point, we have been creating single threaded java applications. However, almost all computer application are multi-threaded.
When creating more than one thread, these threads are run simultaneously, the CPU will switch from one thread to another very quickly that programmer would have the feeling that they run in parallel.

2. Creating your first thread: Counter

We will create a class Counter with one constructor that has the time to count down in seconds. To make the class a thread, it must extend the java.lang.Thread class.
Example:

public class Counter extends Thread

{

int time;

public Counter(int seconds)

{

time = seconds;

}

public void run()

{

while(time > 0)

{

System.out.println(Thread.currentThread().getName()"+time);

try

{

Thread.currentThread().sleep(1000);

time--;

}

catch(InterruptedException ex)

{

System.out.println("error :"+ex.getMessage());

}

}

}

}
And to test this class with three different threads

public class MainThread

{

public static void main(String[]arfs)

{

Counter c1 = new Counter(10);

Counter c2 = new Counter(4);

Counter c3 = new Counter(2);

c1.start();

c2.start();

c3.start();

}}
Note
The start() method for a thread class will invoke its run method. The “run” method for a thread class is the place from which thread execution start.
Another way of creating a thread is by implementing the interface Runnable.

The counter example looks like

public class Counter implements Runnable
{

…
}

Accordingly the test class will be modified to the following:

Thread obj = new Thread (runnableObject);

We note that Counter class is a class that implements runnable.
public class MainThread

{

public static void main(String[]arfs)

{

Thread c1 = new Thread(new Counter(10));

Thread c2 = new Thread(new Counter(4));

Thread c3 = new Thread(new Counter(2));

c1.start();

c2.start();

c3.start();

}

}

3. Using Threads

Timer Application
Examples of threads are those applications that need a timer; think of an application of a window that will close in 5 seconds!
import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class TimedBomb extends JFrame implements Runnable

{

int time = 5;

JLabel lbl = new JLabel("Will Self-distruct In :"+time);

public TimedBomb()

{

super("Self Destruction");

setSize(300,100);

add(lbl);

setVisible(true);

Thread t = new Thread(this);

//this refer to this class, as it implements runnable

t.start();

}

public void run()

{

while(time > 0)

{

try

{

Thread.sleep(1000);

time--;

lbl.setText("Will Self-distruct In :"+time);

}

catch(InterruptedException e)

{

}

}

JOptionPane.showMessageDialog(this,"Window is closing.. good bye!");

System.exit(0);

}

public static void main(String[]args)

{

new TimedBomb();

}

}}
Animation and Graphics
If we want an object to move on the screen, it will have to be redrawn continuously in a different location. If we are to put this in a traditional loop, it will be very fast that the user might not be able to observe the moving object. Hence Threads are used to slow down the execution of the loop.
import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class SalamShabab extends JFrame

{

String salam = "Salam";

String shabab= "Shabab";

int y_salam = 50;

int y_shabab = 75;

int x_salam = 10;

int x_shabab= 100;

int salam_inc = 1;

int shabab_inc=-1;

public SalamShabab()

{

setSize(300,100);

setVisible(true);

}

public void paint(Graphics g)

{

super.paint(g);

g.setFont(new Font("Times New Roman",Font.BOLD,20));

g.drawString(salam , x_salam , y_salam);

g.drawString(shabab , x_shabab , y_shabab);

x_salam = x_salam + salam_inc;

x_shabab = x_shabab + shabab_inc;

System.out.println(x_salam + " " + x_shabab);

if(x_salam == getWidth()-60 || x_salam == 0)

{

salam_inc = salam_inc* (-1);

}

if(x_shabab == getWidth()-60 || x_shabab == 0)

{

shabab_inc = shabab_inc * (-1);

}

try

{

Thread.sleep(10);

}

catch(InterruptedException r)

{

System.out.println(r.getMessage());

}

repaint();

}

public static void main(String[]args)

{

new SalamShabab();

}

}
Exercises
1. Create an array of 10 Counter threads, so that they will have a race. When a thread finishes it should print its name and its place in the race (finishing 1st, 2nd … etc)
[image: image1.png]
2. Modify the Salam Shabab example, so that the strings will move from top to bottom.
3. Add a pause/resume button to the Salam Shabab that will stop/resume the movement of the text.

PAGE
1

