KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS-201 Introduction to Computer Science

Lab 10: Event Driven Programming

Objectives: In this lab, the following topics will be covered

1. Introduction to event-driven programming
2. Your first GUI program
3. Listeners
4. Layout Managers (a mild introduction)

5. JLabel component.

6. Colors

7. Exercises.
Introduction to event-driven programming

Event-driven programming is a programming style that uses a signal-and-response approach to programming.

· Example:

· Signal: Mouse scrolling the scrollbar of this window.

· Response: the word document view moves up or down according to user’s action.

An event is an object that acts as a signal to another object know as a listener.

Clicking of a button with a mouse is an example of an event.

[image: image1]
In event driven programming, the program waits for the next event. The programmer might define some methods that might not be invoked unless an event on some object occurs.

Your first GUI program
In order to create a GUI application that consists of a main window with objects inside in it (like buttons and text fields) to make user’s interaction possible, we have to learn about java’s way of implementing such application

· AWT(Abstract Windowing Toolkit) java.awt.*
This is the original package of java’s implementation of GUI application.

· Swing javax.swing.*;
Swing is an improved version of AWT. It was introduced in JDK1.2. It does not completely replace AWT.
[image: image2.png] [image: image3.png]
Swing window

 AWT window

public class AWTSwing

{

public static void main(String[] args)

{

java.awt.Frame awt = new java.awt.Frame("DeeDee");

javax.swing.JFrame swg = new javax.swing.JFrame("JiiJii");

java.awt.Button awtButton = new java.awt.Button("AWT Button");

javax.swing.JButton swgButton = new javax.swing.JButton("SWING Button");

awt.setSize(600,400);

awt.setLayout(new java.awt.FlowLayout());

awt.add(awtButton);

awt.setVisible(true);

swg.setSize(600,400);

swg.setLayout(new java.awt.FlowLayout());

swg.add(swgButton);

swg.setVisible(true);

}

}

Listeners
In order to make these buttons capable of reacting to user’s action, we would need register them with appropriate listeners. User action can be from the keyboard or they can be from the mouse. Let us consider the ActionListener interface. This method has one method that has the follwing signature

public void action Performed(ActionEvent ae);

Now, in order to add action listener to a component (say Button we will do the following):

buttonObject.addActionListener(myListener);

where myListener is an instance of a class that implements the interface ActionListener. Not that this implies that there are many ways of handling the event.
Examples of Handling a simple button click events

import java.awt.event.*;

import javax.swing.*;

public class SimpleButtonAction

{

public static void main(String[] args)

{

JFrame frame = new JFrame("Example");

JButton butt = new JButton("Click Me");

MyListenerClass myListenerObject = new MyListenerClass();

butt.addActionListener(myListenerObject);

frame.add(butt);

frame.setSize(200,200);

frame.setVisible(true);

}

}// end of SimpleButtonAction class

class MyListenerClass implements ActionListener

{

public void actionPerformed(ActionEvent ae)

{

JOptionPane.showMessageDialog(null,"I was clicked !");

}

}

Note that myListenerObject is an instance of a class that implements the ActionListener interface. The class MyListenerClass can also be moved as an inner class inside the class SimpleButtonAction. Try copy-and-paste it. The advantage of moving the class inside is obvious: The inner class can access instance variables of the main (outer) class easily.
Now consider this example:
import java.awt.event.*;

import javax.swing.*;

public class SimpleButtonAction implements ActionListener
{

public SimpleButtonAction()

{

JFrame frame = new JFrame("Example");

JButton butt = new JButton("Click Me");

butt.addActionListener(this);

frame.add(butt);

frame.setSize(200,200);

frame.setVisible(true);

}

public static void main(String[] args)

{

new SimpleButtonAction();

}

public void actionPerformed(ActionEvent ae)

{

JOptionPane.showMessageDialog(null,"I was clicked !");

}

}// end of SimpleButtonAction class

Note here that we have indicated with the keyword this that, the action is handled by the same class and that it should implement the interface ActionListener.
Finally look at this:

import java.awt.event.*;

import javax.swing.*;
public class SimpleButtonAction

{

public SimpleButtonAction()

{

JFrame frame = new JFrame("Example");

JButton butt = new JButton("Click Me");

butt.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent ae)

{

JOptionPane.showMessageDialog(null,"I was clicked !");

}

});

frame.add(butt);

frame.setSize(200,200);

frame.setVisible(true);

}

public static void main(String[] args)

{

new SimpleButtonAction();

}

}

Note that the instance of the class implementing ActionListener is now an anonymous inner class.

Example of more than one components using the same Listener
import java.awt.event.*;

import javax.swing.*;

import java.awt.*;

public class SimpleButtonAction

{

int count1;

int count2;

JFrame frame = new JFrame("Example");

JButton butt1 = new JButton("Click Me");

JButton butt2 = new JButton("Click Me");

public SimpleButtonAction()

{

count1 = 0;

count2 = 0;

InnerListener listener = new InnerListener();

butt1.addActionListener(listener);

butt2.addActionListener(listener);

frame.setLayout(new FlowLayout());

frame.add(butt1);

frame.add(butt2);

frame.setSize(200,200);

frame.setVisible(true);

}

class InnerListener implements ActionListener

{

public void actionPerformed(ActionEvent ae)

{

if(ae.getSource() == butt1)

{

count1++;

JOptionPane.showMessageDialog(frame,"1st Button "+count1 + " times");

}

else

{

count2++;

JOptionPane.showMessageDialog(frame,"2nd Button "+count2 + " times");

}

}

}

public static void main(String[] args)

{

new SimpleButtonAction();

}

}// end of SimpleButtonAction class
This example demonstrates how we can store the count of how Many times we press on a Button. We can create instance variables count1 and count2 and each one of these will be accessed by the listener class easily (unlike if the listener was outside the class).

We have also used the method getSource() to determine which button fired the event. Note that we could have defined a new class to handle actions of butt2 instead.
Layout Managers (a mild introduction)

We have also used setLayout(new FlowLayout()) to make the components of the JFrame laid automatically according to the size of the window. Java has different predefined ways to lay components. We will discuss layout managers in the next lab.
JLabel Component
JLabel components represent a textual component that can be added to your Java Application. The following example demonstrate how it works
import java.awt.event.*;

import javax.swing.*;

import java.awt.*;

public class SimpleButtonAction extends JFrame

{

JButton butt1 = new JButton("Click me");

JLabel label = new JLabel("");

int count = 0;

public SimpleButtonAction()

{

super("My Application");

setSize(200,200);

setLayout(new FlowLayout());

add(butt1);

add(label);

setVisible(true);

butt1.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent ae)

{

count++;

label.setText("Button was clicked "+count+" Times");

}

});

}

public static void main(String[] args)

{

new SimpleButtonAction();

}

}// end of SimpleButtonAction class

Colors

Java.awt.Color class represent a Color. We can create objects of this class based on the RGB (Red Green Blue) properties. For Example

Color c = new Color(0,0,255);

Represent a blue color.

We can instead make use of the constant colors in the Color class.

[image: image4]
Example of a Blue JFrame and Red JLabel

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class ColoringFrame extends JFrame

{

JLabel lbl = new JLabel("where do you want to go today ?");

public ColoringFrame()

{

getContentPane().setBackground(new Color(0,0,255));

setSize(500,100);

add(lbl);

lbl.setFont(new Font("Times New Roman", Font.BOLD, 34));

lbl.setForeground(Color.red);

setVisible(true);

}

public static void main(String[] args)

{

new ColoringFrame();

}

}

Exercises
1. Create a JFrame application that has:

· One JButton labeled “AC Milan”

· Another JButton labeled “Real Madrid”

· A JLabel with the text “Result: 0 X 0”

· A JLabel with the text “Last Scorer: N/A ”

· A Label with the text “Winner: DRAW”;

Now whenever you click on the AC Milan button, the result will be incremented for AC Milan to become 1 X 0, then 2 X 0. The Last Scorer means the last team to have scored. In this case: AC Milan. And the winner is the team that has more button clicks than the other.
This is how your program should look like:

[image: image5.png] [image: image6.png] [image: image7.png] [image: image8.png] [image: image9.png]
Scenario: Milan scores two goals, then Madrid scores two goals.

2. Implement a JFrame that has four Buttons that are labeled as follows:

* Red

* White.

* Blue.

* Green

Now when the button Red is pressed the main Frame should be colored Red. And so on for the other buttons.

PAGE
2

[image: image10.png][image: image11.png]