King Fahd University of Petroleum & Minerals

Information & Computer Science Department

ICS-201 INTRODUCTION TO COMPUTER SCIENCE
Lab #07: Searching Techniques

 Objectives:

· Comparable Interface

· Comparator Interface

· Searching

Comparable Interface
java.lang package has Comparable interface

public interface Comparable{

public abstract int compareTo(Object object);

}
This interface may be used to order objects of a class that have a natural ordering.

A user defined class that implements Comparable should implement the compareTo method such that : object1.compareTo(object2) returns

· 0 if object1 “is equal to” object2

· > 0
if object1 “is greater than” object2

· < 0
if object1 “is less than” object2

Example 1
class Student implements Comparable{

private int iDNumber;

private double gPA;

public Student(int iDNumber, double gPA){

this.iDNumber = iDNumber;

this.gPA = gPA;

}

public Student(int iDNumber){

this(iDNumber,0.0);

}

public String toString(){

return iDNumber+"\t"+gPA;

}

public int compareTo(Object object){

Student s = (Student) object;

if (iDNumber < s.iDNumber)

return -1;

else if (iDNumber > s.iDNumber)

return 1;

else

return 0;

}

public boolean equals(Object object){

return compareTo(object) == 0;

}

}

Comparator Interface
java.util package has Comparator interface

public interface Comparator{

public abstract int compare(Object object1, Object object2);

public abstract boolean equals(Object object);

}

This interface allows imposing a total ordering on some collection of objects. Comparators can be passed to a sort method to allow precise control over the sort order.

A class that implements Comparator should implement the compare method such that

compare(object1, object2) returns:
· 0 if object1 “is equal to” object2

· > 0
if object1 “is greater than” object2

· < 0
if object1 “is less than” object2
Compare metohd throws ClassCastException - if the arguments' types prevent them from being compared by this Comparator.

It is also preferable for the compare method to return 0 if and only if object1.equals(object2) is true.
Example 2
See implementation of compare method. We compared the objects against natural ordering
import java.util.*;

class Student implements Comparator{

private int iDNumber;

private double gPA;

public Student(int iDNumber, double gPA){

this.iDNumber = iDNumber;

this.gPA = gPA;

}

public Student(int iDNumber){

this(iDNumber,0.0);

}

public String toString(){

return iDNumber+"\t"+gPA;

}

public int compare(Object object1, Object object2){

Student s1 = (Student) object1;

Student s2 = (Student) object2;

if (s2.iDNumber < s1.iDNumber)

return -1;

else if (s2.iDNumber > s1.iDNumber)

return 1;

else

return 0;

}

public boolean equals(Object object){

return compare(this, object) == 0;

}

}

Search

Searching is the process of determining whether or not a given value exists in the data.
Linear Search
The linear (or sequential) search algorithm sequentially scans the array, comparing each array item with the searched value. If a match is found; return the index of the matched element; otherwise return –1.

Performance

For small arrays, linear search is a good solution because it's so straightforward. In an array of a million elements linear search on average will take 500,000 comparisons to find the key. For a much faster search, take a look at Binary Search.

Binary Search

In order to make binary search into a Java subroutine that searches an array A for an item N, we just have to keep track of the range of locations that could possibly contain N. At each step, as we eliminate possibilities, we reduce the size of this range. The basic operation is to look at the item in the middle of the range. If this item is greater than N, then the second half of the range can be eliminated. If it is less than N, then the first half of the range can be eliminated. If the number in the middle just happens to be N exactly, then the search is finished. If the size of the range decreases to zero, then the number N does not occur in the array. Here is a subroutine that returns the location of N in a sorted array A. If N cannot be found in the array, then a value of -1 is returned instead:
Exercise 1

Modify the class Student to implement Comparable interface such that it compares students with their GPA in increasing order.
Exercise 2

Write a class SortingStudentsByGPA that implements Comparator interface such that it compares students with their GPA in decreasing order.
Exercise 3

Write a test class that create an array of class Student and searches the array for a student given his iDNumber to return his GPA.

PAGE
1

