KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS-201 Introduction to Computer Science

Lab 05: Problem Solving and Algorithms


Objectives: In this lab, the following topics will be covered

1. Problem Solving.
2. Algorithms.
3. Exercises.
Problem Solving 

· Ask questions to understand the problem

· Look for familiar things

· Divide and conquer

· Test your solution

Definitions of the Algorithm

· A logical sequence of steps for solving a problem, …

· Unambiguous (precise) set of steps for solving a problem (or sub-problem) in a finite amount of time using a finite amount of data. 
· The algorithm must be general, that is, it should solve the problem for all possible input sets to the problem.
· If there is a particular output for an input, we say that the algorithm can be applied to this input and process it to give the corresponding output.

Properties of Algorithm

An algorithm should have the following properties:

1. No ambiguity in any instruction

2. No ambiguity which instruction is executed next

3. Finite number of instructions

4. Execution must halt and produce a result 

· No ambiguity in any instruction: The instructions in an algorithm must be precisely defined, so that any person or machine implementing the instructions must have no difficulty in implementing them. For example, an instruction: “Adjust the temperature to suitable level” is ambiguous and not precisely defined.

· No ambiguity which instruction is executed next: The order in which instructions in algorithm must be executed should also be well defined and not ambiguous. Again, we can say that the ordering should be such that any person or machine implementing the algorithm must have no difficulty in implementing them.
· Finite number of instructions: The number of instructions in an algorithm must be finite so that implementation by hand or by machine takes a finite amount of time.
· Execution must halt and produce a result: Finally, an algorithm must halt and produce an output. Procedures that loop on forever on their inputs are not algorithms in the strict sense of the term.
Algorithm Control Flow
The constructs are of three types:

· Sequential

· A series of steps or statements that are executed in the order they are written.
· Selection

· Defines one or more courses of action depending on the evaluation of a condition.

· Iteration

· Allows one or more statements to be repeated as long as a given condition is true.

Representation of Algorithms 
· Pseudo-code (Pseudo = not real; false, Code = Program fragment) is a generic way of describing an algorithm using the conventions of programming languages, without using language-specific syntax.

· Pseudo-code generally does not actually use the syntax of any particular language.

· There is no systematic standard form, although any particular writer will generally borrow the appearance of a particular language.

· Details not relevant to the algorithm (such as memory management code) are usually omitted.

· The programming language will be augmented with natural language where convenient (for example, for trivial operations such as swapping two variables).

Examples
1.  Develop an algorithm to find the average of a list of student scores.

Solution:

· The problem statement doesn’t specify the number of students, so we assume that a sentinel value of -1 for score indicates the end-of-input. The algorithm is straightforward. 

· We keep inputting the score of each student.

· For each valid score entered we increment the variable count indicating the number of students.

· For each valid score entered, we add the score to another variable called sum.

· If a score is entered with a value of -1, it indicates the end of input so we stop inputting further scores.

· The average is equal to total/count.

· But what happens if the user didn’t enter any valid score. For example his first entered value is -1?

· In that case if calculate total/count, it will lead to a division by zero error.

· So we say that if count is equal to zero, then the average is also zero
The algorithm is straightforward:

The algorithm is straightforward:

1. Initialize score, total, count and average to zero.

2. Input student score 

3. If score = -1 then go to step 7.

4. Add score to total

5. Increment count by 1.

6. Go to step 2.

7. If count ≠ 0 average = total/count.

8. Output average.

Code:

import java.util.Scanner;

public class Sentinel

{


public static void main(String[] args) 


{



Scanner stdin = new Scanner(System.in);



double sum = 0, avg = 0;



int score = 0, count = 0;



System.out.print("Enter the score (or -1 to Quit): ");



score = stdin.nextInt(); 



while (score != -1)



{




sum += score;




count += 1;




System.out.print("Enter the next grade (or -1 to Quit): ");




score = stdin.nextInt();



}



if (count != 0) avg = sum/count;



System.out.println("Average Grade = "+avg);


}

} 

2.  Develop an algorithm to convert a temperature from Fahrenheit to Celsius: 

Algorithm

1. Get temperature

2. Result = 5 / 9*(temperature – 32)

3. return Result

3. Develop an algorithm to withdraw a given amount from the balance:

Algorithm

4. Get amount

5. If amount > balance

1. Print “cannot exceed balance”

6. Else

1. balance = balance – amount

4. A woman had just filled the cookie jar when the 3 children went to bed.  That night one child woke up, ate half of the cookies and went back to bed.  Later, the second child woke up, ate half of the remaining cookies, and went back to bed.  Still later, the third child woke up, ate half of the remaining cookies, leaving 3 cookies in the jar.  Develop an algorithm to find how many cookies were in the jar to begin with?

Algorithm:

1. Display “Enter the number of children:”
2. Read <number of children>

3. Display “Enter the number of cookies remaining:”
4. Read <cookies remaining>

5. <original cookies> = <cookies remaining>

6. While (<number of children>  >  0)

7. <original cookies> = <original cookies> * 2

8. <number of children> = <number of children> - 1

9. End_While

10. Display “Original number of cookies =” <original cookies>

5. Develop an algorithm to display all prime numbers from 2 to 100. Give both the pseudo-code version. Convert your pseudo-code into a Java program.
Given an integer n, for all positive integers k less than or equal to n do the following:

1. If k is prime, i.e. isPrime(k) is true, print k.

Algorithm isPrime(int x)
1. For a given integer x do the following.

2. Assume that x is prime.

3. For all positive integers j less than x do the following

4. Divide x by j. If the remainder after division is equal to zero for any division, x is not prime.

5. Return the status of primality of x.

import java.util.Scanner;

public class FasterPrimality

{
public static void main(String[] args)


{



Scanner in = new Scanner(System.in);



System.out.println("Enter an integer: ");



int limit = in.nextInt();



for(int count = 2; count <= limit; count++)




if(isPrime(count)) System.out.print(count + "\t");


}


public static boolean isPrime(int number)


{



boolean prime = true;



if(number % 2 == 0 && number > 2) 



{        prime = false;     return prime;   }





int i = 3;



int upper = ((int) Math.sqrt(number));



while(i <= upper && prime)



{        if(number % i == 0) prime = false;   i += 2; }



return prime;


}


}

Exercises

1. Write the Java code for the algorithm of example 2.
2. Write the Java code for the algorithm of example 3.
3. Write the Java code for the algorithm of example 4.
4. Develop an algorithm to check if a given integer is a perfect square or not. Give both the pseudo-code version. Convert your pseudo-code into a Java program.
5. Develop an algorithm to find the maximum and minimum value from a list of integers. Give both the pseudo-code version and the flowchart version. Convert your pseudo-code into a Java program.






















PAGE  
2

