KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS-201 Introduction to Computer Science

Lab 04: Inner classes and Java Virtual Machine

Objectives: In this lab, the following topics will be covered

1. Inner classes

2. Java Virtual Machine

3. Examples & Exercises for practice

1- Inner classes:
Ordinary classes that we have covered so far are called top-level classes. The access modifiers allowed for them are public and default only. Nested classes are classes defined inside other classes. These nested classes can be static or non static.

Static nested classes are called static inner classes or top-level nested classes. A non static nested class is called an inner class. Static and non static inner classes can have all four access modifiers i.e. public, protected, default, and private.
Static inner classes are nested for organizational convenience. The additional thing added by nesting is the name and access level of the class. Static inner classes cannot access non static members of the enclosing class.
Non static inner classes cannot have static members. Each instance (object) of the inner class is linked to an object of the outer class. The non static inner class can access all members of the outer class (variables and methods) even if they are private. You can access the members of the inner classes from the enclosing class, but after an object from the corresponding inner class is made.
A local class is a class declared within a block of code. A local class is visible and usable within the block of code in which it is defined. A local class can access all members of the enclosing class even if they are private. In addition, it can access any final local variable or method parameters defined within its scope. Local classes cannot have access modifiers, and static members. If we are defining a local class and making only one object from it, then it can be converted into an anonymous class. Thus, an anonymous class is a local class with no name. Since an anonymous class has no name, you can not declare a variable to be of that type. For this reason, anonymous classes must either be a subclass of another class or implement an interface. An anonymous class is always defined in a statement.
Exercises

1- Consider the following example: go over the comments one by one and answer them.
class Outer {

 private String o1="instance variable from outer";

 private static String o2="static variable from outer";

 public void instMethOuter () {

// print in1 of class InstInner

// print in4 of class StatInner

}

public static void statMethOuter() {

// call instMeth1() of class InstInner

 // call statMethI2()

}

// non static inner class

private class InstInner {// First uncomment statements corresponding to in2 and

// statMeth1 to check that non static inner classes cannot have static members

private String in1="private instance variable from non static inner";

//
private static String in2="private static variable from non static inner";

public void instMethI1() {

// print o1 and o2 of Outer

}

//
public static void statMethI1() {

//
}

}// end of non static inner class

// static inner class

private static class StatInner {

private String in3="private instance variable from static inner";

private static String in4="private static variable from static inner";

public void instMethI2() {

System.out.println("from instance method of static inner class");

// print o1 and o2 of Outer

}

public static void statMethI2() {

 System.out.println("from static method of static inner class");

}

}// end of static inner class

// main method

}

class Test {

public static void main(String[] args) {

// make objects from both classes InstInner and StatInner. Change their access //modifiers if needed

}

}

2.Which variables may be referenced correctly at line 8?
1. public class Outer{
2. private int a = 0;
3. public int b = 0;
4. public void method(final int c) {
5. int d = 1;
6. class Inner{
7. private void innerMethod(int e) {
8. //HERE
9. }
10. }
11. }
12. }

3.Which variables may be referenced correctly at line 6?
1. public class Outer{
2. private int a = 0;
3. static public int b = 0;
4. static class Inner{
5. private void innerMethod(int e) {
6. //HERE
7. }
8. }
9. }

2. Java Virtual Machine:

JVM is a component of the Java system that interprets and executes the instructions in our class files. Each instance of the JVM has one method area, one heap, and one or more stacks - one for each thread. When JVM loads a class file, it puts its information in the method area. As the program runs, all objects instantiated are stored in the heap. The stack area is used to store activation records as a program runs.

[image: image1.png]method area

Thread1 Thread2

stack
frame

stack
frame

7

7

7

7

stack
frame

stack
frame

stack area

Class Loading:

Loading means reading the class file for a type, parsing it to get its information, and storing the information in the method area. For each type it loads, the JVM must store the following kinds of information in the method area:

· The fully qualified name of the type

· The fully qualified name of the type's direct superclass or if the type is an interface, a list of its direct super interfaces .

· Whether the type is a class or an interface

· The type's modifiers (public, abstract, final, etc)

· Constant pool for the type: constants and symbolic references.

· Field info: name, type and modifiers of variables (not constants)

· Method info: name, return type, number & types of parameters, modifiers, bytecodes, size of stack frame and exception table.

The end of the loading process is the creation of an instance of java.lang.Class for the loaded type. The purpose is to give access to some of the information captured in the method area for the type, to the programer.

TestCircleClass.java:

The following program gives information regarding the class Circle [Refer to Lab 3].

[image: image2.png]public
public
public
public
public
public
public

Sring gettencl)
ass getsu
Clese getauperclass(
hoctes lsInterfacE(;
oles u\] getInterfaces(
FlEl: [] getMethods () ’
Fieldl] geceield=0

nstructor[] getC

onstruct
ors()

Exercise :

4- Compile and execute the above program and observe its output. Now study the methods available in the class Class (from the java documentation). Some of the methods available are:

[image: image3.png]int o
Long oL

short |[(short) O
char T\u0000
byte (byte) 0

boolean |false

reference|null
float 0.0¢

double |0.0d

Use these (and other) methods to get more information regarding the class

Circle in your program TestCircleClass.java

Linking: Verification, Preparation and Resolution:

The next process handled by the class loader is Linking. This involves three sub-processes: Verification, Preparation and Resolution. Verification is the process of ensuring that binary representation of a class is structurally correct. Example of some of the things that are checked at verification are:

· Every method is provided with a structurally correct signature.

· Every instruction obeys the type discipline of the Java language

· Every branch instruction branches to the start not middle of another instruction.

In the Preparation phase, the Java virtual machine allocates memory for the class (i.e static) variables and sets them to default initial values. Note that class variables are not initialized to their proper initial values until the initialization phase - no java code is executed until initialization. The default values for the various types are shown below:

Class Initialization and Instantiation

Initialization of a class consists of two steps:

· Initializing its direct superclass (if any and if not already initialized)

· Executing its own initialization statements

The above imply that, the first class that gets initialized is Object. Note that static final variables are not treated as class variables but as constants and are assigned their values at compilation.

After a class is loaded, linked, and initialized, it is ready for use. Its static fields and static methods can be used and it can be instantiated. When a new class instance is created, memory is allocated for all its instance variables in the heap. Memory is also allocated recursively for all the instance variables declared in its super class and all classes up in inheritance hierarchy. All instance variables in the new object and those of its superclasses are then initialized to their default values. The constructor invoked in the instantiation is then processed. Finally, the reference to the newly created object is returned as the result.

The following program demonstrates the order of class instantiation.

Exercise:

5- Try to give the output of the above example without compiling and executing it. Then, compile and execute the program to check your answer.
Comment the constructor Super(), now compile the program and explain the compilation error. comment again the other the other constructor in Super and compile. Why is your program now compiling without errors; explain.

import java.lang.reflect.Method;

public class TestCircleClass

{

 public static void main(String[] args)

 {

 Circle myCircle = new Circle(15.75);// according to your constructor

		

 Class circleClassInfo = myCircle.getClass();

 System.out.println("Class Name is: " + circleClassInfo.getName());

 System.out.println("Parent is: " + circleClassInfo.getSuperclass());

 System.out.println("Methods are: ");

 Method[] methods = circleClassInfo.getMethods();

 for(int i = 0; i < methods.length; i++)

 System.out.println(methods[i]);

 }

}

Resolution is the process of replacing symbolic names for types, fields and methods used by a loaded type with their actual references. Symbolic references are resolved into a direct references by searching through the method area to locate the referenced entity.

class Super {

	int x=10;

 Super() {

 this(9);

 printThree();

 x=20;

 }

 Super (int x) {

 	printThree();

 this.x=x;

 }

 void printThree() {

 System.out.println("three");

 }

}

class Test extends Super {

 int three = (int)Math.PI; // That is, 3

 public static void main(String[] args) {

 Test t = new Test();

 t.printThree();

 }

 void printThree() {

 System.out.println("three = "+three+" x= "+x);

 }

}

PAGE
6

