KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS-201 Introduction to Computer Science

Lab 03: Abstract classes and Interfaces

Objectives:

To gain experience with:

· Abstract Classes and their purpose
· Interfaces and their purpose

1. Abstract Classes.

 When an existing class is extended, the subclass programmer has the option of whether or not to override the methods of the super class. Sometimes we may wish to force the subclass to override a method. This is usually the case if there is no good default method in the super class or when the method implementation becomes meaningful only at the subclass level. To achieve this, we declare the methods we wish to force the subclass to override as abstract. A class that has one or more abstract methods is called an abstract class and must be declared as such.
Notice that:

· We cannot create an instance of an abstract class. However, we can declare a reference variable of abstract class.

· The principles of inheritance, up-casting and polymorphisms apply equally well to abstract classes.

 Consider The classes covered in Lab 1, i.e. PurchaseItem, CountedItem, and WeighedItem. The method getPrice() which was supposed to return the total price was implemented in the superclass PurchaseItem to return the unit price. Now if the programmer of one of the subclasses forgets to override getPrice() method, it will return a wrong answer, i.e. a unit price instead of the total price. A better solution will be to declare the method getPrice() as abstract in the superclass PurchaseItem as shown below.
Now in order for the two subclasses CountedItem and WeighedItem to be concrete classes (i.e. they can be instantiated), they have to implement getPrice(). This way we are sure that the subclass will override getPrice() and provide a meaningful implementation for it.

[image: image1]
Exercise 1:
Consider the following shapes; Ellipse, Circle, Triangle, EquilateralTriangle. Each shape should have a name, a method to compute its perimeter, and another method to compute its area. The name should be an instance variable of type String. Design your inheritance hierarchy with the common features in the superclass Shape. Notice that the area and perimeter are common to all Shapes, but we don’t know how to compute the area or perimeter for a general shape.
The ellipse class has a major and minor axes a and b, respectively. The constructor should assign the largest value to a and smallest to b. The area and perimeters of an ellipse are:

Perimeter = P = π EQ \r(2(a2 + b2) - (a - b)2/2)
[Note that if a = b = r, then P = 2πr]

Area = A = πab
The Triangle class has three instance variables side1, side2, and side3. The formula for the area and perimeter of a general Triangle with sides A, B, and C is given by.

[image: image2.wmf][image: image3.png]ARBA= JS(S-A(5-BS-C)

[image: image4.png]PERIMETER = A+ B+C

[image: image5.png]_A+B+C

 The condition for any three positive values to make sides of a Triangle is:

side1+side2>side3 and side2+side3>side1 and side3+side1>side2

You need to check this condition inside the constructor. If it is not satisfied, print an error message and terminate the program, otherwise make your Triangle object.

The three sides of the equilateral triangle are equal.

Make a Test class where you make objects from the different classes and store them in an array of type Shape. Then, make a loop and print the objects name, area, and perimeter through toString i.e. you need to override toString in the Shape class only.

2. Interfaces

Some OO languages such as C++ allow a sub-class to inherit from more than one super class (multiple inheritance). While this has some advantages, it makes such languages complex. To avoid such complexities, Java does not allow for multiple inheritance. However, a lot of the advantages of multiple inheritance can be achieved using Interfaces.

 An interface is similar to a class but with the following restrictions:

· All methods are implicitly abstract and public

· An interface cannot have instance variables. However, an Interface may have constants (final variables) and these are implicitly public and static. Also they are inherited by any class that implements the interface.

· An Interface can extend another interface and it is implemented by a class using the implements keyword. In fact, a class may implement any number of interfaces.

Exercise 2:
Consider an interface Scalable with a method scale of type void. It takes the scaling factor as a parameter. Make the shape class defined above implement the Scalable interface. Note that since Shape is abstract, it does not have to implement scale method.

Make the appropriate subclasses override scale method by multiplying their instance variables by the scale factor.

Modify the above Test class so that you add a static method that receives an array of Type Scalable, and a scale factor. This method should visit all the elements of the Scalable array and call the scale method with the scale factor passed to the static method. You should print your objects before and after scaling.

public abstract class PurchaseItem {

	private String name;

	private double unitPrice;

	public PurchaseItem (String name, double unitPrice) {

		this.name=name;

		this.unitPrice=unitPrice;

	}

	public PurchaseItem () {

		this("no item",0);

	}

	public String getName() {

		return name;

	}

	public void setName (String name){

		this.name=name;

	}

	public double getUnitPrice() {

		return unitPrice;

	}

	

	public abstract double getPrice() ;

	public String toString() {

		return name+" @ "+unitPrice;	}

}

PAGE
1

_1108533971.unknown

