KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS-201 Introduction to Computer Science

Lab 02: Polymorphism

Objectives: In this lab, the following topics will be covered

1. Polymorphism

2. upcasting and downcasting
3. instanceof operator
What is polymorphism?

 The meaning of the word polymorphism is something like one name, many forms.

How does Java implement polymorphism?

 Polymorphism manifests itself in Java in the form of multiple methods having the same name (overridden methods). The same method call (invocation) will lead to different method definitions.

 Polymorphism is implemented in java because of late binding. Deciding on which version of a method will be executed is based on the actual type of the object whose reference (address) is stored in the reference variable, and not on the type of the reference variable on which the method is invoked.

Late binding does not apply to final and private instance methods. It does not also apply to static methods. For these three cases the binding will be done during compilation time (early binding).
The binding decision cannot be made at compilation time because the compiler has no way of knowing (when the program is compiled) the actual type of the object whose reference is stored in the reference variable.

Polymorphism requires that the type of the reference variable (storing the object’s address) be a superclass of the class from which the object is instantiated (created).

The type of the reference variable must also be a class that either defines or inherits the method that will be invoked on the object.

Consider the following statements which are based on the assignment of Lab1:

PurchaseItem p= new WeighedItem(“banana”,3.5,3); // make a weighedItem object

The statement above is an example of upcasting. Although the actual object is of type WeighedItem, the methods that can be accessed through variable p are the methods of PurchaseItem class and those inherited by PurchaseItem. The following statement is illegal

p.getWeight(); // illegal
we can still access getWeight() by doing downcasting.

WeighedItem w =(WeighedItem) p;

Now we can call getWeight() method using w reference variable i.e. w.getWeigth().

Downcasting has to be explicit i.e. using the name of the class between brackets. Downcasting has to be preceded by upcasting. Downcasting should not go lower than the class of the actual object, otherwise a run-time exception will be generated. To make a safe downcast, the type of the object can be checked using instanceof operator.
Polymorphism is especially useful when we want to create a heterogeneous collection of objects i.e. making one array containing different objects. Such an example is represented below. Consider a class StaffMember that represents all workers in a certain organization , some of whom are employees and some are volunteers. Among the employees: some are regular employees paid monthly, some are temporary and are paid by the hour, while some are managers (executives) and get bonuses.

[image: image1]

[image: image2]

[image: image3]

[image: image4]
Suppose we would like to store personnel of all kinds in a single array, so we can easily write code that takes care of all the workers.
For example, suppose we want to implement a method getTotalCost() in class Staff that will compute how much money is needed to pay all personnel at the end of the month

[image: image5]
Exercise:
Consider the following inheritance hierarchy.

A class RentedVehicle that has:

· One private instance variable baseFee of type double

· One constructor to initialize the instance variable

· One instance method getCost () that returns the base fee

· One instance method travel of type void that takes one parameter of type int to indicate the distance traveled in KM. Here the method should print “I cannot define how to travel”.

A subclass FuelVehicle that :

· has one additional private instance variable nbKms indicating the total number of kilometers traveled.
· one constructor to initialize the instance variables.

· one instance method getMileageFees to return the fees due to mileage based on the following:

If nbKms < 100 mileagefees=0.2*nbkms

If 100<=nbKms<= 400 mileagefees=0.3*nbkms

If nbKms>400 mileagefees=0.3 times 400 plus 0.5 times the extra kilometers above 400.
· overrides travel that updates nbKms by adding the parameter variable which represents the distance traveled

A Car class which is a subclass of FuelVehicle that :

· has one additional private instance variable nbSeats
· has one constructor to initialize the instance variables

· overrides getCost method by adding nbseats*baseFee to mileageFees

A Truck class which is a subclass of FuelVehicle that:

· has one private instance variable capacity

· has one constructor to initialize the instance variables

· overrides getCost method by adding baseFee*capacity to mileageFees

A Bicycle class that extends RentedVehicle that:
- has one additional private instance variable nbDays indicating the number of days it is rented.

- has one constructor to initialize the instance variables

- overrides travel method by printing “I don’t consume fuel”

- overrides getCost method to return baseFee * nbDays

Implement all five classes with their accessor and mutator methods.
Write an application class that generates 6 objects randomly from either a Car, or a Truck, or a Bicycle class. You need to generate an integer random number between 1 and 3 and based on its value you generate your object from one of the three classes. Your generated objects will be stored in a RentedVehicle array.

Write a loop of 20 iterations. During each iteration, it generates a random number from 0 to 5 (index of the element in the array). The selected element will call the travel method with some distance.

Now write another loop to find the total cost of the rented vehicles in the array. Meanwhile

-if the object is a car print its name and the number of seats.

- if it is a Truck, print its name and capacity

- if it is a Bicycle, print its name and how many days it is rented.

Executive

HourlyEmployee

Volunteer

Employee

StaffMember

// StaffMember.java

class StaffMember {

 private String name;

 private String phone;

 public StaffMember (String name, String phone) {

 this.name = name;

 this.phone = phone;

 }

 public double pay(){

		return 0.0;

 }

}

// Volunteer.java

class Volunteer extends StaffMember {

 public Volunteer (String name, String phone) {

 super (name, phone);

 }

 // No need to override pay, used as inherited

 }

// Employee.java

class Employee extends StaffMember

{

 private double payRate;

 public Employee (String name,String phone, double payRate) {

 super (name, phone);

 this.payRate = payRate;

 }

 public double getPayRate() {

 return payRate;

}

 // override pay method

 public double pay () {

 return payRate;

 }

}}

// HourlyEMployee.java

class HourlyEmployee extends Employee{

 private int hoursWorked;

 // constructor

 public HourlyEmployee (String name,String phone,double payRate) {

 super (name,phone, payRate);

 hoursWorked = 0;

 }

 // added method

 public void addHours (int moreHours) {

 hoursWorked += moreHours;

 }

 // override method pay of Employee: Compute and return the pay for this

// HourlyEmployee

 public double pay () {

 double payment = getPayRate() * hoursWorked;

 hoursWorked = 0; // once pay computed set hoursWorked to 0

 return payment;

 }

}

// Executive.java

class Executive extends Employee

{

 private double bonus;

 // constructor

 public Executive (String name,String phone, double payRate)

 {

 super (name,phone, payRate);

 bonus = 0; // bonus has yet to be awarded

 }

 // unique method

 public void awardBonus (double execBonus)

 {

 bonus = execBonus;

 }

 // override method pay of Employee: Compute and

 // return the pay for an executive, which is the

 // regular employee payment plus a one-time bonus

 //---

 public double pay ()

 {

 double payment = super.pay() + bonus;

 bonus = 0; // once bonus added reset it to 0

 return payment;

 }

}

// Staff.java

class Staff {

	public static void main (String[] args) {

	StaffMember[] staffList;

 staffList = new StaffMember[4];

 staffList[0] = new Executive ("Ahmad","860-1490", 1923.07);

 staffList[1] = new Employee ("Ali","0555-0101", 846.15);

 staffList[2] = new HourlyEmployee ("Othman","0555-0690", 8.55);

 staffList[3] = new Volunteer ("Bandar","849-8374");

 for (int i=0;i< staffList.length;i++) {

 	if (staffList[i] instanceof Executive) {

 		Executive e=(Executive)staffList[i];

 		e.awardBonus (5000.00);// downcasting to access awardBonus method

 	}

 	else if (staffList[i] instanceof HourlyEmployee) {

 	HourlyEmployee h=(HourlyEmployee)staffList[i];

 	h.addHours (40);// downcasting to access addHours method

 }

 }

 System.out.println("The total amount to pay is "+getTotalCost (staffList));

 }

// compute payday costs

 public static double getTotalCost (StaffMember[] stm) {

 double amount = 0.0;

 for (int count=0; count < stm.length; count++) {

 amount += stm[count].pay(); // polymorphism

 }

 return amount;

 }	

	

	}

PAGE
3

