KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

ICS-201 Introduction to Computer Science

Lab 01: Inheritance

Objectives: In this lab, the following topics will be covered

1. Inheritance (in Java),

2. Exercises for practice

3. Shadowing, Overriding, and Hiding

1. Inheritance (in Java):

Inheritance is an important object-oriented concept that allows classes to be reused in order to define similar, but distinct, classes. In this lab we walk through the development of a class hierarchy and a program that makes use of several classes in the hierarchy. We begin by looking at an example of inheritance hierarchy

[image: image1.wmf]Student

name

id

gpa

getName()

getGPA()

getId()

setName()

toString()

Undergrad

year

setYear()

getYear()

toString()

Graduate

thesisTitle

setThesisTitle()

getThesisTitle()

toString()

The class Student is the parent class. Note that all the variables are private and hence the child classes can only use them through accessor and mutator methods. Also note the use of overloaded constructors.

MyLine.java

The class Undergrad extends the Student class. Note the overridden toString() method

Graduate.java:

The class Graduate extends the Student class too. Note the overridden toString() method

TestStudents is a driver class to test the above classes

Exercise1:

Consider a superclass PurchaseItem which models customer’s purchases. This class has:

· two private instance variables name (String) and unitPrice (double).
· One constructor to initialize the instance variables.

· A default constructor to initialize name to “no item”, and unitPrice to 0. use this()

· A method getPrice that returns the unitPrice.

· Accessor and mutator methods.

· A toString method to return the name of the item followed by @ symbol, then the unitPrice.

Consider two subclasses WeighedItem and CountedItem. WeighedItem has an additional instance variable weight (double) in Kg while CountedItem has an additional variable quantity (int) both private.

- Write an appropriate constructor for each of the classes making use of the constructor of the superclass in defining those of the subclasses.
- Override getPrice method that returns the price of the purchasedItem based on its unit price and weight (WeighedItem), or quantity (CountedItem). Make use of getPrice of the superclass
- Override also toString method for each class making use of the toString method of the superclass in defining those of the subclasses.

toString should return something that can be printed on the receipt.

For example

Banana @ 3.00 1.37Kg 4.11 SR (in case of WeighedItem class)

Pens @ 4.5 10 units 45 SR (in case of CountedItem class)
Write an application class where you construct objects from the two subclasses and print them on the screen.

2. Shadowing, Overriding, Hiding

Suppose you're reading some Java code, and you come across something like this:
This usage is legal, but not necessarily desirable. In fact, it raises an interesting question about how the Java programming language specification treats conflicting names. There are several terms used to describe various cases: shadowing, overriding, and hiding

First an important point needs to be made: just because the Java programming language allows you to do something, it doesn't always mean that it's a desirable thing to do. For example, it's legal to say:
 class A {

 int A;

 }

in a program, but you probably shouldn't because it's confusing. The best way to handle issues with conflicting names is to simply avoid them as far as possible. For example, you can avoid many problems if you follow a coding convention that specifies that the first letter of a type name (such as "class A") should be capitalized, while the first letter of a field name (such as "int A") should be lowercase.

Now let's look at an example of shadowing:
When your run Shadow, you should see:

 a = 0

 b = 47

One place shadowing comes up is when you have field names and parameter names that are the same, and you want to use the parameters to set the fields:
 int a;

 public void f(int a) {

 a = a;

 }

This doesn't work, because the parameter "a" shadows the field "a", that is, the parameter name blocks access via a simple name to the field name. You can get around this problem by saying:
 this.a = a;

which means "set field a to parameter a". Whether this style of usage is desirable or not depends on your particular biases; one point in its favor is that you don't have to invent parameter names like "a1" or "_a".
The second example is one that illustrates overriding:
When you run Override, you should see:
 Override.f

 B.f

In this example, the method Override.f overrides the method B.f. If you have an object of type Override, and call f, Override.f is called. However if you have an object of type B, B.f is called. This approach is a standard part of object-oriented programming. For example, java.lang.Object declares a hashCode method, but subclasses, such as String, provide an overriding version of the method. The overriding version is tailored to the particular type of data represented by the class.
You can call the superclass method by using the notation:
 super.f();

A third example is that of hiding
:
When you run Hide, you should see:
 A.f

 Hide.g

In this example, Hide.f hides A.f, and Hide.g overrides A.g. One way of seeing the difference between hiding and overriding is to note that overriding applies to regular instance methods; the actual method that is called is determined at run time based on the type of the actual object. This sort of dynamic lookup does not happen for static methods or for fields. For example, in this code:

the method reference through "cref" results in Lookup.f being called, but the field reference obtains C.x. Or to say it another way, the actual class of an object determines which instance method is called. But for fields and static methods, the type of the reference is used (here it's cref, of type C). When you run Lookup, you should see:
 Lookup.f

 37
Exercise 2:

Use the sample Java programs provided above and modify them to answer the following questions.

a- Can an instance method override a static method?
b- Can a static method override (hide) an instance method?
c- Can you override a final instance method?
d- Can you override an instance method and make it final?
e- Can you override an instance method and change its return type?

f- Can you hide a final static method ?
g- Can an instance field hide a static field?
h- Can a static field hide an instance field?
i- Can an instance method with public visibility override an instance method with default visibility?
j- Can an instance method with default visibility override an instance method with public visibility?
k- Can an instance method with protected visibility override an instance method with default visibility?
l- Can an instance method with default visibility override an instance method with protected visibility?
m- Based on the last four question, order the access visibility from the widest to the narrowest (weakest) and state the rule for overriding (instance methods) or hiding (static methods) ?
public class Student{

	private String name;

	private int id;

	private double gpa;

	

	public Student(int id, String name, double gpa) {

		this.id = id;

		this.name = name;

		this.gpa = gpa;

	}

	

	public Student(int id, double gpa){

		this(id, "", gpa);

	}

	

	public String getName(){

		return name;

	}

	public int getId() {

		return id;

	}

	public double getGPA(){

		return gpa;

	}

	

	public void setName(String newName){

		this.name = newName;

	}

	public String toString(){

		return "Student:\nID: "+id+"\nName: "+name+"\nGPA: "+gpa;

	}

}

public class Undergrad extends Student

{

	private String year;

	public Undergrad(int id, String name, double gpa, String year)

	{

		super(id, name, gpa);

		this.year = year;

	}

	

	public String getYear() {

		return year;

	}

	

	public void setYear(String newYear) {

		this.year = newYear;

	}

	

	public String toString() {

		return "Undergraduate "+super.toString()+"\nYear: "+year;

	}

}

 public class Shadow {

 int a;

 int b;

 // parameters a/b shadow instance variables a/b

 public Shadow(int a, int b) {

 // set parameter equal to itself

 a = a;

 // set instance variable b equal to parameter b

 this.b = b;

 }

 public static void main(String args[]) {

 Shadow s = new Shadow(37, 47);

 System.out.println("a = " + s.a);

 System.out.println("b = " + s.b);

 }

 }

 class A {

 int A = 37;

 A() {

 int A = 47;

 A aref = new A() {

 int A = 57;

 void A() {}

 };

 }

 }

Student:

ID: 97000

Name: Sameer

GPA: 3.51

Student:

ID: 98000

Name:

GPA: 3.22

Undergraduate Student:

ID: 99000

Name: Shahid

GPA: 2.91

Year: Junior

Graduate Student:

ID: 200000

Name: Mubin

GPA: 3.57

Thesis: Algorithms and Complexity

Press any key to continue...

public class Graduate extends Student

{

	private String thesisTitle;

	public Graduate(int id, String name, double gpa, String thesisTitle)

	{

		super(id, name, gpa);

		this.thesisTitle = thesisTitle;

	}

	

	public String getthesisTitle() {

		return thesisTitle;

	}

	

	public void setThesisTitle(String newthesisTitle) {

		this.thesisTitle = newthesisTitle;

	}

	

	public String toString() {

		return "Graduate " +super.toString()+"\nThesis: "+thesisTitle;

	}

}

public class TestStudents

{

	public static void main(String[] args)

	{

		Student s1 = new Student(97000, "Sameer", 3.51);

		Student s2 = new Student(98000, 3.22);

		Undergrad u1 = new Undergrad(99000, "Shahid", 2.91, "Junior");

		Graduate g1 = new Graduate(200000, "Mubin", 3.57,

"Algorithms and Complexity");

		

		System.out.println(s1);

		System.out.println(s2);

		System.out.println(u1);

		System.out.println(g1);

	}

}

Output

 class B {

 void f() {

 System.out.println("B.f");

 }

 }

 public class Override extends B {

 // instance method f overrides instance method B.f

 void f() {

 System.out.println("Override.f");

 }

 void g() {

 // call Override.f

 f();

 // call B.f

 super.f();

 }

 public static void main(String args[]) {

 Override o = new Override();

 o.g();

 }

}

 class A {

 static void f() { // static method

 System.out.println("A.f");

 }

 void g() { // instance method

 System.out.println("A.g");

 }

 }

 public class SubA extends A {

 static void f() { // static methods are not overridden

 System.out.println("Hide.f");

 }

 void g() {

 System.out.println("Hide.g");

 }

 public static void main(String args[]) {

 A aref = new SubA();

 // call A.f()

 aref.f();

 // call SubA.g()

 aref.g();

 }

 }

class C {

 int x = 37;

 void f() {

 System.out.println("C.f");

 }

 }

 public class Lookup extends C{

 int x = 47;

 void f() {

 System.out.println("Lookup.f");

 }

 public static void main(String args[]) {

 C cref = new Lookup();

 // call Lookup.f

 cref.f();

 // display C.x

 System.out.println(cref.x);

 }

 }

PAGE
4

