
Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
 CECI’2001, March 7-8, Jakarta

Parallel and Fault Tolerant Database for Applet Oriented
Active Networks

Akbar1, Buhari1, Sahalu2, Saleem1

1Lecturer, King Fahd University of Petroleum and Minerals.
2Instructor, King Fahd University of Petroleum and Minerals,

31261 Dhahran, Saudi Arabia.
Email: mibuhari@ccse.kfupm.edu.sa

Abstract:

The Active Network paradigm allows programs to be
injected into network routers so that customised user
computations can be performed inside the routers in
addition to their traditional packet forwarding fuction.
An alternative implementation of active networks
attaches to the transmitted packets the programs to be
executed at the routers. A program residing in a router
is activated only after verifying the packet that carries
the reference to the code.
Routers normally use access control lists to process
packets headers in order to make permit or denial of
service to the packets. Processing incoming packets
using the access control rules is time consuming and can
degrade overall network performance. Traditionally,
the rules in the access control lists are interpreted
sequentially to make decision on packet forwarding.
In this paper we propose a mechanism for processing
the rules in the access control list in parallel in order to
improve network performance. Our system achieves
fault tolerance by using Java threads. Early experience
with our systems indicates that it can improve network
performance by up to 20%.

Keywords: Applet oriented Active Network, Parallel
Processing, JDBC

1. Introduction

The emergence of Active Network technology has attracted
many academics and researches to become involved in the
development of this technology. Active network provides
opportunities for the Information Technology world due to
several factors. First, active network technology can be used
to reduce the time required for the standardization process
of new network services. Second, active network shifts the
conventional network paradigm: from a passive node that
only transfers bits to a more general processing engine like
an end station. Furthermore, it would also make the
possiblity of enabling on-the-fly modification of network
functionality, for example to adapt to changes in link
conditions.

The infusion of Java technologies has enabled the Internet
industry to create dynamic, content driven, platform
independent and distributed Internet applications. Using
Java applets and the industry standard Java Database
Connectivity API (JDBC), it is now possible to built
powerful Internet based database applications with
sophisticated graphics user interface and interactive
database access, comparable to their native operating
system and database counterparts. Our active network
implementation is based on the use of java technology and a
parallel system which helps to do processing faster as well
as providing some support for fault tolerance (using
Threads).

The basic idea behind this system is that when a sender
wishes to send a request to a receiver, the permission for the
required transmission has to be checked using an Access
Control List (ACL). The ACL is a database of rules that the
router consults in order to make packet forwarding
decisions. In existing systems the access control rules are
checked sequentially and this can lead to network
performance degradation. We have developed a java-based
active network implementation which uses PVM to process
the ACL rules in parallel. We report the design and our
experience with this system.

The rest of this paper is organised as follows: Section 2
gives an overview of active networks in general and our
active network model in particular. In section 3 we outline
the issues of network access and firewall design policy. A
brief overview of access control list is presented in Section
4 and Section 5 we describe the process of using a java
applet to access the server in our implementation. The
operation of our proposed model is discussed in Section 6.
We discuss the pros and cons of our system in Section 7
and conclude the paper in Section 8.

2. System description

2.1. Types of active network system

There are two possible approaches to build active networks.
A discrete or out-of-band approach and an integrated or in-
band approach [Raj97].

 1

mailto:mibuhari@ccse.kfupm.edu.sa

Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
 CECI’2001, March 7-8, Jakarta

2.1.1. The Discrete Approach: This may also be called a
programmable node (switch/router) approach. Here
programs are injected into the programmable active node
separately from the actual data packets that flow through the
network. A network user would send the program to the
network node (switch or router), where it would be stored
and later executed when the data arrives at the node,
processing that data. The data can have some information
that would enable the node decide how to handle it or what
program to execute.

2.1.2. The Integrated Approach: In an integrated
approach, also termed as the encapsulation approach, the
program is integrated into every packet of data sent into the
network. These packets that carry programs in addition are
called capsules in the literature to distinguish them from
passive data-carrying packets. When these capsules arrive at
the active node, it interprets the programs and sends the
embedded data depending on its interpretation of these
programs. This concept is similar to Postscript code, where
actual data is embedded in program fragments that the
printer understands. In this approach, each active node
would have built-in a mechanism to load the encapsulated
code, an execution environment to execute the code and a
relatively permanent storage where capsules would retrieve
or store information.

2.2. Our active network system

Our system is based on the programmable node
approach whereby programs are injected into the network
using separate packets than those that carry data. We prefer
for our active network platform that the packet carries only
identifiers or references to the services that reside in the
node due to the following reasons:

1. It maintains the packet size to minimum
2. The idea is to optimize the resources available in every

machine connected to a LAN. Code can be stored in
non-exhaustive machines.

3. The packet format can be designed in conformance
with the Parallel processing architecture of interest.

For initial experimentation, we have setup an active
network system with three computers. Two computers act
as an end system and another computer is treated as a
router. The configuration is shown in Figure 1.

Figure 1. The Configuration Scenario

Although the machines are physically connected through
the Ethernet, we design that all communication should be
made through the router. PVM resides in the active router
and the other two computers (Computer A and Computer B)
act as PVM daemon.

3. Network services and firewall policies

A key decision that ought to be taken when developing the
security policy of a computer network is the design of
firewalls. A firewall is a hardware or software barrier
placed between the network of concern and the rest of the
world to prevent unwanted and (potentially) damaging
intrusions into the network.

1. Network Service Access Policy: A higher-level, issue-

specific policy which defines those services that will be
allowed or explicitly denied from the restricted
network, plus the way in which these services will be
used, and the conditions for exceptions to this policy.
When restricting a service, network service access
policy should also include all other outside network
access such as dial-in and SLIP/PPP connections.
It is better to draft the policy before the firewall is
implemented. While protecting the resources, there
should be ample ways to access the outside world.
Special rights for certain users should also be provided.

2. Firewall Design Policy: A lower-level policy which
describes how the firewall will actually go about
restricting access and filtering the services as defined in
the network service access policy. The major concept
here is based on two policies:
i. Permit any service unless it is expressly

denied; or
ii. Deny any service unless it is expressly

permitted.
The second policy follows the classic access model

used in all areas of information security.

4. Access Control List

Firewalls are highly needed to secure the system
from an intruder’s access. The firewall has to use an IP
router to control the passing of any packet from the Internet
into the Intranet. The packet filtering process involves
parsing the headers of the received IP packets and
forwarding or discarding the packets according to the
Access Control Rules specified by a network administrator.
The performance of the whole router depends on the
procedure on which the rules in the Access Control List
(ACL) are applied to the packet and a decision is made to

Active
Router

Computer B
196.1.65.177

Computer A
196.15.37.22

 2

Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
 CECI’2001, March 7-8, Jakarta

allow or reject the packet. ACL’s are the lists present in the
routers which contain the conditions that ought to be
satisfied for permit or denial of entry into a network.
Handling all the incoming packets using the access control
rules consumes a lot of time and so it degrades the total
performance of a network. Also, the performance of the off-
the-shelf routers is degraded in proportion to the complexity
of the ACL. Hence IP routers, that forward packets more
efficiently, are needed.

The conventional method of packet filtering is
achieved by sequentially interpreting the ACL, to determine
whether a packet should be forwarded or discarded. The
access-control decision facility itself is now generally
conceived to be based on a system of access-control rules in
which specific policies are expressed. The rules in turn
generally depend on properties of the system context (e.g.,
the time), the target object (content-dependent access
control), and the requester (user-dependent-access control).
An ACL, specified by the network administrator, is a set of
conditions the packets must satisfy and actions to be
performed upon the packet and is shown in Table 1. The
process of filtering a packet is done by checking a set of six
input parameters. These parameters are the Packet type, the
Source IP address, the Source TCP/UDP port, the
Destination IP address, the Destination TCP/UDP port and
the Acknowledgment (ACK) bit. The output is the action to
be performed. An action has a value either to “Permit” or
“Deny”: “Permit” indicates that a packet should be
forwarded and “Deny” indicates that it should be discarded.
The action specified in a row is considered only when an
input pattern matches the respective components of the
corresponding row.

Conditions(C)
Packet
Type

Source
IP
Address

Source
TCP/UDP
Port

Destination
IP Address

Destination
TCP/UDP
Port

ACK
Bit

Action(A)

Table 1. Format of Access Control List

Traditionally, packet filtering is done using

sequential parsing methods [Tak91]. With the sequential
parsing technique, increase in the number of rules in the
ACL list will cause the parser to consume more time and
become inefficient.

Sequential parsing causes the following problems
[Man96,Tak91]:
1. As the number of rows of the rules in the ACL

increases, the cost of packet filtering also increases.
2. Because a condition consists of conjunctions of

parameters, disjunctive conditions must be specified in
several rules. In these rules, each kind of parameter has
the same value unless it specifies a disjunctive value.
As a result, the same value might be applied to a packet
many times.

3. Consider the conditions of the ith rule and the kth rule in
the ACL, where i < k. If the Condition of the ith rule is
always true when the Condition of the kth rule is true,
the rule in the kth row of the ACL is redundant because
its action, Ak, is never carried out. This is similar to an
infeasible path (IFP) in a procedural program and this
has to be remedied.

Takeshi et al.[Tak91] have proposed a compiler for
parallelizing IP-packet filter rules, to improve the network
security and reduce the degradation in packet-forwarding
performance. Maruyama et al[Mit97] describe a high-speed
IP router from the points of view of parallel processing
granularity and dedicated processing. Our approach to
efficient routing protocol processing and packet-forwarding
is based on the use of parallel active networks.

5. Applet to Server access

The JDBC API, categorizes JDBC drivers into four types:
1) JDBC-ODBC bridge, 2) native-API partly-Java driver,
3) net-protocol all-Java driver, 4) native-protocol all-Java
driver.

We are using a driver type that belongs to category 3. The
first and second types are of the JDBC drivers which are not
fully compatible with applet oriented connections. The net-
protocol all-java driver is described as, “A net-protocol all-
Java driver translates JDBC calls into a DBMS-independent
net protocol which is then translated to a DBMS protocol by
a server. This net server middleware is able to connect its
all Java clients to many different databases. The specific
protocol used depends on the vendor. In general, this is the
most flexible JDBC alternative. It is likely that all vendors
of this solution will provide products suitable for Intranet
use. In order for these products to also support Internet
access they must handle the additional requirements for
security, access through firewalls, etc., that the Web
imposes. Several vendors are adding JDBC drivers to their
existing database middleware products."

Computer A
 KFUPM

Server

Browser

Computer C

Database
Server

Computer B

 3

Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
 CECI’2001, March 7-8, Jakarta

Figure 2. Net server middleware architecture

6. Steps for our system processing

From Client side:

1. The client’s IP address is found out automatically
using Java methods.

2. The client can now select the destination to which
to send the packet, among the exisiting
destinations list. This list is maintained because we
are currently experimenting with the system within
a subnet.

3. The client, then selects the protocol which is
desired to be used to send the packet. The protocol
options are TCP, UDP, IPv4 and IPv6.

4. The user is allowed to select a list of processes
which he wishes to execute at the router level or at
the destination. Available programs that can be
selected at this point in the implementation are
Matlab and PVM.

5. Then the user can start sending data.

From Server Side:

1. The appropriate server for the respective protocol
can be started.

2. There are options for multicasting also.

Processing done:

1. After the client gives the send request, the JDBC is
called to access the database (MS-Access) to
determine the permission provided. If the
permission is present, then the process is allowed.
If not, the packet transmission is denied. As the
JDBC cannot talk to the server, we use the net-
server middleware called as IDS.

2. Then, the routing table is accessed to determine to
which node the packet has to be transmitted if the
source and destination is known.

3. To access the database and to change the ACL,
there is a password setup for the database, without
which the user cannot access the database.

Database maintainence:

1. The processing can be done at the Database in
parallel depending upon the position of the client
and the current utilisation of the network.

2. The updation of the Databases are done
immediately. When the administrator performs an
update on one database, then there is a script used
to update on other databases with the lock being
done at the database retrival.

7. Advantages and limitations of our system:

7.1. Advantages:

1. The system does the processing concurrently on
the database, if more than one request occurs at the
same time. Conceptually, a single Connection
instance can service multiple concurrently
executing statements, PreparedStatement (the
statements that are ready and have the resources to
be exectued) and CallableStatement (the statement
which direct any function call) instances. It is
quite natural to come up with a Java program in
which multiple query Statements are created from
a single Connection. Then these Statement objects
are used by different threads, or their repeated
executions are interweaved with each other.

However, the underlying database system may not
support this kind of operation. Note that the IDS
Server does not change the capability of the
database system in this manner. You can find out
whether this feature is supported by calling
DatabaseMetaData.getMaxStatements(). A return
value of 0 means the database system supports
unlimited number of concurrently executed
Statements created from a single Connection.
Returning 1 means only one active Statement per
Connection is allowed, or you need a separate
Connection for another active Statement.

2. The processing can be done on-the-fly with the
help of PVM and Matlab. The router can distribute
the job using PVM and PVMD. Various
processings can be done using Matlab.

3. The whole system is heterogenous. Currently, it

works on Windows NT, Windows 98 and Linux.

7.2 Limitations:

1. The system only supports Netscape Navigator but
not Internet Explorer.

2. The system is currently being tested only within an
Intranet.

8. Conclusion

With the emergence of Active Networks, the network
equipments have now become active instead of being
passive. Now, by the introduction of parallel and fault
tolerant approach on the database access while doing the
access control processing by any router, the active
processing of the network equipment has increased its
performance. Further work has to be done on this side so as
to make the system viable to Internet oriented applications
as well.

 4

Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
 CECI’2001, March 7-8, Jakarta

9. References

[Raj97] http://www.cis.ohio-state.edu/~jain/cis788-

97/active_nets/

[Tak91] Takeshi Miei, Mitsuru Maruyama, Tsuyoshi

Ogura & Naohisa Takahashi (1997).
Parallelization of IP-Packet Filter Rules.
Proceedings of Third International Conference
on Algorithms and Architectures for Parallel
Processing ’91, 381-388.

[Man96] Mansour Esmaili, Rei Safavi-Naini, Bala

Balachandran & Josef Pieprzyk (1996). Case-
Based Reasoning for Intrusion Detection.
Twelfth Annual Computer Security
Applications Conference ‘96, 214-223.

[Mit97] Mitsuru Maruyama, et al, CORErouter-I: An
Experimental Parall IP Routr Using a Cluster
of Workstations. IEICE TRANS. COMMUN.,
Vol. E80B, No. 10 October 1997.

 5

http://www.cis.ohio-state.edu/~jain/cis788-97/active_nets/
http://www.cis.ohio-state.edu/~jain/cis788-97/active_nets/

	Network services and firewall policies

