
RDF in the Clouds: A Survey

Zoi Kaoudi, Ioana Manolescu

To cite this version:

Zoi Kaoudi, Ioana Manolescu. RDF in the Clouds: A Survey. The International Journal on
Very Large Databases, Springer-Verlag, 2014. <hal-01020977>

HAL Id: hal-01020977

https://hal.inria.fr/hal-01020977

Submitted on 8 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01020977

Noname manuscript No.
(will be inserted by the editor)

RDF in the Clouds: A Survey

Zoi Kaoudi · Ioana Manolescu

Received: date / Accepted: date

Abstract The Resource Description Framework (RDF) pi-
oneered by the W3C is increasingly being adopted to model
data in a variety of scenarios, in particular data to be pub-
lished or exchanged on the Web. Managing large volumes
of RDF data is challenging, due to the sheer size, the het-
erogeneity, and the further complexity brought by RDF rea-
soning. To tackle the size challenge, distributed storage ar-
chitectures are required. Cloud computing is an emerging
paradigm massively adopted in many applications for the
scalability, fault-tolerance and elasticity features it provides,
enabling the easy deployment of distributed and parallel ar-
chitectures. In this article, we survey RDF data management
architectures and systems designed for a cloud environment,
and more generally, those large-scale RDF data management
systems that can be easily deployed therein. We first give
the necessary background, then describe the existing sys-
tems and proposals in this area, and classify them according
to dimensions related to their capabilities and implementa-
tion techniques. The survey ends with a discussion of open
problems and perspectives.

1 Introduction

The Resource Description Framework (RDF) pioneered by
the W3C [42] is increasingly being adopted to model data in
a variety of scenarios, in particular data to be published or
exchanged on the Web. An RDF dataset consists of triples

Z. Kaoudi
Inria Saclay–Île-de-France and Université Paris-Sud
Bâtiment 650 (PCRI), 91405 Orsay Cedex, France
E-mail: zoi.kaoudi@inria.fr
Present address: IMIS, Athena Research Center, Greece

I. Manolescu
Inria Saclay–Île-de-France and Université Paris-Sud
Bâtiment 650 (PCRI), 91405 Orsay Cedex, France
E-mail: ioana.manolescu@inria.fr

stating that a resource has a property with a certain value.
Further, RDF comes endowed with an associated schema
(ontology) language, namely RDF Schema (or RDFS, in
short), for describing classes to which resources belong, re-
source properties, and the relationships which hold between
such classes and properties [19]. For instance, using RDF
one can state that any student is also a human, or that if
X worksWith Y , then X also knows Y ; or that if X drives
car Z, then X is a human etc. These examples show that
RDFS statements lead to entailed (or derived) facts. When
an RDF Schema is available for a dataset, RDF semantics
requires considering that the database consists not only of
triples explicitly present in the store, but also of a set of en-
tailed triples obtained through reasoning based on an RDF
Schema and the RDFS entailment rules.

A large class of interesting RDF applications comes from
the Open Data concept that “certain data should be freely
available to everyone to use and republish as they wish,
without restrictions from copyright, patents or other mech-
anisms of control”1. Open Data federates players of many
roles, from organizations such as business and government
aiming at demonstrate transparency and good (corporate)
governance, to end users interested in consuming and pro-
ducing data to share with the others, to aggregators that may
build business models around warehousing, curating, and
sharing this data [69]. Sample governmental Open Data por-
tals are the ones from the US (www.data.gov), UK (www.
data.gov.uk) and France (www.etalab.fr). While
Open Data designates a general philosophy, Linked Data
refers to the “recommended best practice for exposing, shar-
ing, and connecting pieces of data, information, and knowl-
edge on the Semantic Web using URIs and RDF” [16]. In
practice, Open and Linked data are frequently combined to
facilitate data sharing, interpretation, and exploitation [56].

1 http://en.wikipedia.org/wiki/Open_data

2 Zoi Kaoudi, Ioana Manolescu

Sample applications of Linked Open Data are DBPedia (the
Linked Data version of Wikipedia), BBC’s platform for the
World Cup 2010 and the 2012 Olympic games [53]. Inter-
esting RDF datasets may involve large volumes of data. For
instance, data.gov comprises more than 5 billion triples,
while the latest version of DBPedia corresponds to more
than 2 billion triples. Many large datasets have been also
gathered in life sciences for integrating and analyzing large
biomedical datasets [74], some of them listed at www.w3.
org/wiki/DataSetRDFDumps. For example, the Linked
Cancer Genome Atlas dataset currently consists of 7.36 bil-
lion triples and is estimated to reach 30 billions [79]. Other
large RDF projects, involving billions of triples, are described
in [63] (mostly projects carried by the Ontotext company).

To store and query RDF data, many systems have been
built, firstly within the Semantic Web community such as
Jena [89] and Sesame [20]. RDF storage, indexing and query
processing has also attracted interest from the data manage-
ment community [1, 60, 88] and lately, commercial data-
base management systems also started providing support for
RDF, such as Oracle 11g [25] or IBM DB2 10.1 [18]. These
works mostly focus on the evaluation of conjunctive queries
on RDF databases, and do not consider RDF-specific fea-
tures such as those related to reasoning.

The need to scale beyond the capacity of a single-site
server has brought about distributed RDF management sys-
tems. In particular, since early interest in RDF coincided
with important research invested into peer-to-peer data man-
agement platforms, peer-to-peer RDF data management al-
gorithms were proposed for instance in [49, 50]. Peer-to-
peer platforms sought to capitalize on the availability of het-
erogeneous, distributed hardware owned by numerous users
to implement large-scale distributed applications and in par-
ticular data sharing. They placed a strong emphasis in pre-
serving some level of peer independence, and adapting grace-
fully to peers and/or datasets joining, respectively, leaving
the network, which in turn complicates the application’s re-
silience to failures, and maintaining some level of service. A
survey on P2P-based RDF data management can be found
in [36].

More recently, in particular since the advent of inex-
pensive distributed hardware, research in distributed data
management has focused on platforms with centralized con-
trol where one or a few master nodes organize the work of
many “slave” ones; the MapReduce [28] distributed pro-
gramming model exemplifies this mindset, with a master
distributing and supervising work between the other nodes
(slaves) of a cluster. In particular, cluster-based RDF stores
have been developed, such as 4store [40], the clustered ver-
sion of Jena [64] or Virtuoso [35]. Finally, the term cloud
computing is used to designate a broad family of distributed
storage and processing architectures, whose main common
characteristics are: scalability, fault-tolerance, and elastic al-

location of as much storage and computing power as needed
at a particular point in time by each application. Another
valued feature of most current cloud computing platforms is
that they release the application owner or developer from the
burden of administering hardware and software resources
and simplify the deployment of large-scale distributed ap-
plications. These features have led the Semantic Web and
data management community to investigate a variety of ar-
chitectures, and develop platforms, for the cloud-based man-
agement of large volumes of RDF data.

The goal of our work is to provide a comprehensive sur-
vey of RDF data management in cloud environments, or,
more broadly speaking, large-scale distributed platforms, where
storage and query processing are performed in a distributed
fashion but under a centralized control (as opposed to decen-
tralized peer-to-peer systems). Our choice of focus is moti-
vated first, by the wide current availability of commercial
and private cloud platforms, and second, by the shared goals
of RDF platforms developed either for the cloud or simply
for a large-scale cluster: being able to store and process ef-
ficiently very large volumes of Semantic Web data, in an ar-
chitecture with a single point of control over the distributed
nodes.

We provide a description of existing systems and pro-
posals in the area of our survey, and classify them accord-
ing to different dimensions related to their capabilities and
implementation techniques. Our first identified dimensions
refer to the fundamental functionalities of RDF stores: data
storage, query processing, and reasoning. Then, within each
dimension we highlight the aspects of centralized RDF data
management that need to be revised in a cloud environment
and classify each system according to their basic character-
istics. Finally, we provide a high-level view of the systems
classification along these dimensions, pointing out the ar-
eas where numerous works compete and those where further
progress is needed and unexplored paths remain.

The rest of the paper is organized as follows. We start
in Section 2 by introducing the main features of RDF and
its accompanying schema language RDFS, while Section 3
gives an overview of the cloud-based frameworks and tools
used for RDF data management. In Section 4 we present
current approaches on RDF data storage, in Section 5 we
describe different query processing paradigms for evaluating
RDF queries and in Section 6 we layout the state-of-the-
art in RDF reasoning on top of cloud platforms. Section 7
gives a high-level comparison and classification of existing
systems. Finally, we conclude in Section 8 and give insights
into open problems and directions.

2 The RDF data model and its query language

We briefly recall the main features of the RDF data model [54,
57] and its query language, SPARQL [41, 67].

RDF in the Clouds: A Survey 3

:picasso :guernica:paints

:name

"Pablo"

cubist

:type
:exhibited

:reinasofia :located :madrid

:rodin :creates :thethinker
:exhibited :museerodin

:located
:paris

:name
"Auguste"

:type

:sculptor

:subClassOf

:painter

:artist

:type

:artifact

RDF
RDFS

:subClassOf

:subClassOf

Fig. 1: RDF(S) graph.

2.1 RDF and RDF Schema

RDF data is organized in graphs consisting of triples of the
form (s, p, o), stating that the subject node s has the property
edge p whose value is the object node o. A key concept for
RDF is that of URIs or Unique Resource Identifiers; these
can be used in either of the s, p and o positions to uniquely
refer to some entity, relationship or concept. Literals (con-
stants) are also allowed in the o position.

RDF allows representing a form of incomplete informa-
tion [2] through blank nodes, standing for unknown con-
stants or URIs; an RDF database may, for instance, state that
the author of X is Jane while the date of X is 4/1/2011, for
a given, unknown resourceX . A query on this database ask-
ing for what Jane wrote on 4/1/2011 should return X; in
other terms, joins are possible on blank nodes (which can be
alternatively viewed as ”labeled nulls”). This contrasts with
standard relational databases where all attribute values are
either constants or null (and null never compares equal to
any other constant, neither to null).

Formally, let U , L and B denote three pairwise disjoint
sets of URIs, literals, and blank nodes, respectively. A triple
is a tuple (s, p, o) from (U ∪B)×U × (U ∪L∪B), where
s is the subject, p is the property (a.k.a. predicate) and o is
the object of the triple. In the following, we will refer to an
RDF term as any value of U ∪L∪B and to an RDF element
as any among the subject, predicate, and object of an RDF
triple. In this paper, we attach the prefix ‘:’ for all URIs to
distinguish them from the corresponding literals.

An RDF graph (or dataset) is a set of triples. It encodes
a graph structure in which every triple (s, p, o) describes a
directed edge labelled with p from the node labelled with s
to the node labelled with o. There is a variety of syntaxes
for RDF (e.g., RDF/XML, N-Triples, Turtle, etc.). The most
basic one is N-Triples, which contains one triple per line.

RDFS [19] is the accompanying W3C proposal of a schema
language for RDF. It is used to describe classes and relation-

:sculptor :subClassOf :artist .
:painter :subClassOf :artist .
:cubist :subClassOf :painter.
:picasso :type :cubist .
:picasso :name "Pablo" .
:picasso :paints :guernica .
:guernica :type :artifact .
:guernica :exhibited :reinasofia .
:reinasofia :located :madrid .
:rodin :type :sculptor .
:rodin :name "Auguste" .
:rodin :creates :thethinker .
:thethinker :exhibited :museerodin .
:museerodin :located :paris .

Fig. 2: RDF(S) graph of Fig. 1 in N-Triples syntax.

ships between classes (such as inheritance). Further, it al-
lows specifying properties, and relationships that may hold
between pairs of properties, or between a class and a prop-
erty. Given that any class (or property) is a resource in itself,
RDFS statements are represented by triples; thus an RDFS
can be seen as an RDF graph in itself. We call an RDFS
triple schema triple, and any other triple a data triple. In the
RDF and RDFS world, to state that a resource r is of a type
τ , a triple of the form ”r :type τ” is used. Since this triple
is about the resource r (not about the class τ), it is viewed
as a data triple.

Figure 1 shows an illustration of an RDF(S)2 graph from
the cultural domain. The upper level of the graph depicts the
schema, while the lower level is the RDF data. Resources
are oval-shaped, with RDFS classes shown in dashed ovals.
Rectangles denote literals which in our example are strings;
an arrow outgoing from a resource node describes a property
of that resource, with the property name being the label on
the arrow. The graph of Figure 1 can also be represented by
a set of RDF triples as shown in Figure 2 in the N-Triples
syntax.

A distinguishing feature of RDF and RDFS is the abil-
ity to infer new RDF triples (entailed triples) based on a set
of RDFS entailment rules [42]. For instance, in the exam-
ple of Figure 1, we can infer that :rodin is also of the type
:artist, because :rodin is an instance of :sculptor and
:sculptor is a subclass of :artist. Then, if a query asks
for the instances of class :artist, the answer should con-
tain :rodin although it is not explicitly present in the data.
This process is often referred to as RDFS entailment or rea-
soning.

The complete set of RDFS entailment rules proposed by
W3C consists of thirteen rules and can be found in [42].
Some of these rules are crucial and occur frequently while
modelling an application domain; others mostly capture the
internals of RDFS, stating, for instance, that any URI ele-

2 From now on, we will use the term RDF(S) to refer to both RDF
and RDFS.

4 Zoi Kaoudi, Ioana Manolescu

Table 1: Minimal RDFS entailment rules.

Rule Triples Entailed triple

s1 (c1 :subClassOf c2), (c2 :subClassOf c3) (c1 :subClassOf c3)
s2 (p1 :subPropertyOf p2), (p2 :subPropertyOf p3) (p1 :subPropertyOf p3)
i1 (p1 :subPropertyOf p2), (s p1 o) (s p2 o)
i2 (c1 :subClassOf c2), (s :type c1) (s :type c2)
i3 (p :domain c), (s p o) (s :type c)
i4 (p :range c), (s p o) (o :type c)

:picasso :type :painter .
:picasso :type :artist .
:rodin :type :artist .
:cubist :subClassOf :artist .

Fig. 3: Entailed triples of RDF(S) graph of Fig. 1.

SELECT ?y ?z
WHERE {

?x :type :artist .
?x :paints ?y .
?y :exhibited ?z .
?z :located :paris . }

Fig. 4: Example SPARQL query.

ment is an instance of class :Resource. In [59] the authors
present a small subset of the RDFS entailment rules which
preserves the core functionalities and is sound and complete.
This fragment is called minimal RDFS in [59] and its rules
are shown in Table 1. This set of rules is the one largely used
by RDF data management systems that support reasoning.

Figure 3 shows all the triples entailed from the RDF
graph of Figure 1 based on the above set of rules. Taking
these triples into account together with the triples of Fig-
ure 2, the answer of the query that asks for all the instances
of :artist includes :rodin and :picasso, although these
were not directly declared of type :artist in the original
RDF graph.

If more expressive schema or constraints are needed, go-
ing beyond RDFS, one could use ontology languages such
as OWL [39] to describe the properties of RDF databases.
One commonly supported OWL fragment is the OWL Horst
fragment consisting of 24 rules [80].

2.2 SPARQL

For what concerns RDF querying, SPARQL [41] is the W3C
standard for querying RDF graphs. A commonly-used sub-
set of SPARQL is the Basic Graph Pattern (BGP) queries
of SPARQL, i.e., its conjunctive fragment allowing to ex-
press the core Select-Project-Join database queries. In such
queries, the notion of triple is generalized to that of triple
pattern (s, p, o) from (U∪B∪V)×(U∪V)×(U∪L∪B∪V),
where V is a set of variables. The normative syntax of BGP
queries is:

SELECT ?v1 . . .?vm WHERE {t1 . . . tn}

where t1, . . . , tn is a set of triple patterns, and ?v1 . . .?vm a
set of variables occurring in {t1 . . . tn} that defines the out-
put of the query (distinguished variables). In the above, re-
peated use of a variable encodes a join. Blank nodes can
also appear in a triple pattern of a query, and are treated as
non-distinguished variables.

Two common types of BGP queries are star-join queries,
queries of k triple patterns containing the same variable in
the subject position, and path or chain queries, queries of
k triple patterns where the object of each triple pattern is
joined with the subject of the next one.

A sample conjunctive SPARQL query, which we will
use throughout the paper, is shown in Figure 4. The query
asks for the artists’ paintings which are exhibited in muse-
ums located in Paris. The first two triple patterns are joined
on variable ?x (forming a star-join subquery), the second
with the third on variable ?y and the last two on variable ?z.
The last three triple patterns form a path subquery.

BGP query semantics can be briefly outlined as follows.
First, a mapping µ from B ∪ V to U ∪ B ∪ L is defined
as a partial function µ : B ∪ V → U ∪ B ∪ L. If t is a
triple pattern, tµ denotes the result of replacing the blank
nodes and variables in t according to µ. The domain of µ,
dom(µ), is the subset of V where µ is defined. Let q =

SELECT ?v1 . . .?vm WHERE {t1 . . . tn} be a BGP query and
G the RDF graph against which q should be evaluated. The
evaluation of q is: eval(q) = {µ(?v1 . . .?vm) | dom(µ) =

varbl(q) and {tµ1 , tµ2 , ..., tµn} ⊆ G}, with varbl(q) the set
of variables and blank nodes occurring in q.

To obtain complete query results, all the results based
also on entailed triples must be produced. Let Grdfs denote
the original RDF graph to which all the entailed triples have
been added. The result of evaluating a query q on Grdfs is
then: evalrdfs(q) = {µ(?v1 . . .?vm) | dom(µ) = varbl(q)

and {tµ1 , tµ2 , ..., tµn} ⊆ Grdfs}
SPARQL also supports more complex queries than sim-

ple BGPs with features such as the OPTIONAL operation
(a triple pattern can be optionally matched), filter expres-
sions with operators such as <, =, and > for numerical val-
ues (range constraints) and string functions such as regu-
lar expressions. Multiple BGPs can be combined through a
UNION operation. Order constraints are also possible through
ORDERBY and LIMIT operators. The latest SPARQL 1.1
proposal [41] also supports property paths, subqueries, nega-
tion, aggregates etc. We do not consider these features in the

RDF in the Clouds: A Survey 5

table item
1 n

attribute
1 n

name
1

1

1

n valuekey1
1

Fig. 5: Structure of a table in a key-value store.

present survey, and instead focus on the core BGP dialect,
which is by far the most widely supported in the existing
platforms.

3 Building blocks: key-value stores and MapReduce
systems

Existing cloud- and/or massively distributed RDF stores have
relied significantly on novel software systems and platforms,
in particular on NoSQL key-value stores, and on MapRe-
duce implementations such as Hadoop. To make our presen-
tation self-contained, we briefly review here these concepts
and the associated notations. The interested reader may find
in [23] a survey of NoSQL systems while [32, 73] cover
MapReduce variations and other massively parallel data man-
agement frameworks.

3.1 Key-value stores

An important family of NoSQL systems are the distributed
key-value stores, providing very simple data structures based
on the concept of (key, value) pairs. Such stores typically
handle items, each of which consist of a key and several
attributes; in turn, an attribute consists of a name and one
or several values. For convenience, most key-value stores
also support named collections of items, which are typically
called tables. Figure 5 outlines this simple data model.

Key-value stores are notably schema-less, in the sense
that there can be any set of attributes associated to each key,
while each attribute name can have multiple values. Key-
value stores offer a simple interface based on the operations
PUT(table, key, items) and GET(table, key), and do
not support operations requiring data from different tables.
Therefore, if data needs to be combined across tables, this
must take place within the application layer.

Popular key-value stores include Apache Accumulo [7],
Amazon’s DynamoDB [13], and Apache HBase [10]. Al-
though they share the basic elements of their interfaces, these
systems differ with respect to their internal architecture (client-
server vs. P2P-based), access control policies, authentica-
tion, consistency etc. One difference that affects the design
of an RDF store relying on such platforms is whether the
index offered on the key is hash-based (allowing only di-
rect lookups), or sorted (which furthermore allows for prefix
lookups).

map

map

map

map
vk

reduce

reduce

k

mapper

mapper

mapper

mapper

reducer

reducer

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

Merge
(5)

Input
(1)

Map
function
(2)

Sort
(3)

Shuffle
(4)

Reduce
function
(6)

Output
(7)

vk
vk

vk

vk

vk
vk

vk
vk

vk
vk
vk
vk

vk

vk

vk

vk

k v v v v

k

k
vk v

vk
vk
vk
vk

vk v v v

k
k
k

vk v v
v
v
v

v

v

Fig. 6: MapReduce functionality.

Some NoSQL systems support a more complex, nested
data model, usually referred to as extended key-value stores.
In such stores, multiple attribute name-value pairs of a cer-
tain key can be nested into super attributes (a.k.a. super
columns). Examples of extended key-value stores include
Google’s BigTable [24] and Apache’s Cassandra [8]. In Cas-
sandra [8], a sorted index is available on both attributes and
super attributes, as well as a secondary index that maps at-
tribute values to keys.

3.2 MapReduce and Hadoop

Interest in massively parallel processing has been renewed
recently since the emergence of the MapReduce framework [28]
and its open source implementation Hadoop [9]. MapRe-
duce has become popular in various computer-science fields
as it provides a simple programming paradigm which frees
the developer from the burden of handling parallelization,
scalability, load balancing and fault-tolerance.

MapReduce processing is organized in jobs. In turn, each
job consists of a map and a reduce phase, separated by a
shuffle (data transfer) phase. The map phase is specified by
the user-defined function MAP which takes as input (key, value)
pairs, performs some tasks on these (if needed) and outputs
intermediate pairs (ikey, ivalue). These pairs are shuffled
through the network and are given as input to the reduce
phase. The reduce phase is specified by the user-defined
function REDUCE which takes as an input all the ivalues
that have the same ikey. The user can also specify the shuf-
fle phase by defining the PARTITION function.

The file system splits data into chunks either automati-
cally to a default size or in a way specified by the user. The
key aspect of MapReduce enabling parallelism is that a map
(respectively, a reduce) phase is performed by several map-
pers (respectively reducers), each of which are independent

6 Zoi Kaoudi, Ioana Manolescu

processes operating on separate chunks of data. The nodes
of the cluster run in parallel one or more map/reduce tasks.

Figure 6 illustrates how MapReduce works. Each input
data chunk initializes a mapper task (1), which processes
the input according to the user-defined MAP function (2).
The function outputs intermediate key-value pairs, which
are then sorted according to their key (3). The intermedi-
ate pairs are shuffled and the ones with the same key (same
color in the figure) are routed to the same reducer (4). In
the reducer, the values corresponding to the same key are
merged into a list (5). Finally, the REDUCE function oper-
ates on the list of values for a specific key (6) and outputs
the results (7).

Hadoop [9] is the most popular open-source implemen-
tation of Google’s MapReduce engine. HDFS is Hadoop’s
distributed file system, analogous to Google File System
built for Google’s MapReduce engine. HDFS purpose is to
store very large files in a distributed and robust fashion. In
particular, it stores data in blocks of constant size (64 MB
by default) which are replicated within the system (3 times
by default).

Although MapReduce was first mostly intended for data
analysis tasks, it has also started being used in query pro-
cessing tasks. However, MapReduce does not directly sup-
port more complex operations such as joins. Techniques for
MapReduce-based join evaluation are proposed in [5, 6, 17,
32]. Two of the most widely-used ones is the standard repar-
tition join and the broadcast join. The former distributes the
two relations on the join key during the shuffle phase and
joins them in the reduce phase. The latter broadcasts the
smaller relation to all nodes and performs the join at the map
phase.

4 Cloud-based RDF storage

This section focuses on the storage subsystems of the exist-
ing RDF cloud data management systems. From the angle
of their underlying stores, existing systems can be classified
into the following categories:

– systems relying on a distributed file system, such as HDFS;
– systems which use existing “NoSQL” key-value stores [23]

as back-ends;
– systems warehousing RDF data in a “federation” of single-

site (centralized) RDF stores, one on each node;
– hybrid systems using a combination of the above.

The questions to be answered by a large-scale distributed
RDF storage platform are: how to partition the data across
nodes, and how to store on each node the corresponding par-
tition. Figure 7 proposes a classification of existing RDF
stores according to the back-ends and partitioning schemes
they rely on; this figure will serve as a basis of our discus-
sion.

4.1 Storing RDF data in a distributed file system

Distributed file systems (DFS) are designed for scalable and
reliable data storage in a cluster of commodity machines
and, thus, they are a good fit for storing large files of RDF
data in the cloud. Large files are split into chunks, distributed
among the cluster machines and automatically replicated by
the DFS for fault-tolerance reasons. The server of the DFS
is usually the node responsible for replicating and keeping
track of the different chunks of data making up each file.
Distributed file systems do not provide fine-grained data ac-
cess, and thus, selective access to a piece of data can only
be achieved through a full scan of all the files. Recent works
such as [30, 31] are based on Hadoop and improve its data
access efficiency with indexing functionalities. However, these
techniques have not yet been fully adopted within the Hadoop
development community.

We classify the systems using DFS to store RDF data
according to the way they model the data as follows: (i) the
triple model which preserves the triple construct of RDF,
(ii) the vertical partitioning model which splits RDF triples
based on their property, and (iii) the entity class-based model
which uses high-level entity classes graph to partition the
RDF triples.

4.1.1 Triple model

The simplest way to store RDF data into a DFS is by loading
each file into the DFS. The file system is then in charge of:
splitting the files into blocks, replicating them and placing
them at the cluster nodes. Conceptually this can be consid-
ered as storing all triples in a 3-attribute relational table that
has no indices in a centralized environment.

Systems based on this approach include [71, 75] which
use the Hadoop Distributed File System (HDFS). In SHARD [71]
a slight variation is used where triples having the same sub-
ject are grouped in one line in the file. For instance, for the
subject :picasso in our running example of Figure 1 we
would have the following line in a file in HDFS:
:picasso :paints :guernica :name "Pablo" :type :cubist.

Neither of the works in this category explicitly deter-
mine how triples are grouped in files; this task is left to the
application or user.

4.1.2 Vertical partitioning model

A more elaborate way to store RDF data into a DFS is to par-
tition it into smaller files and thus, enable finer-granularity
access to the data. To this end, RDF triples are partitioned
based on the value of their property and each partition is
stored within one file into the DFS, named according to the
respective property value. As the property can explicitly be
inferred from the file name, the property-partitioned files

RDF in the Clouds: A Survey 7

RDF storage

Distributed
file systems

Key-value
stores

HybridCentralized
RDF stores

Triple-model

Vertical
partitioning

Entity class-based Triple-based Graph-based Graph
partitioning

Graph partitioning
based on query workload

Horizontal fragmentation
based on query workload

Fig. 7: Taxonomy of storage back-ends and partitioning schemes used by the systems.

need only to store the subject and object of each triple, a
factorization which reduces the size of the stored data. For
example, for the triples of Figure 2, the file exhibited con-
tains the following lines:
:guernica :reinasofia .
:thethinker :museerodin .

The above vertical partitioning scheme is used by sys-
tems described in [46, 70, 93]. It is reminiscent of the verti-
cal RDF partitioning proposed in [1, 81] for centralized RDF
stores.

Following the property-based partitioning scheme, all
triples using the special built-in RDF property :type are lo-
cated in the same partition. However, because such triples
appear very frequently in RDF datasets, this leads to a sin-
gle very big file containing such triples. In addition, most
triple patterns in SPARQL queries having :type as a prop-
erty usually have the object bound as well. This means that
a search for atoms of the form (:x, :type, :t1), where
:t1 is a concrete URI, in the partition corresponding to the
:type property is likely to be inefficient. For this reason, in
HadoopRDF [46] the :type partition is further split based
on the object value of the triples. For example, the triple
(:picasso, :type, :cubist) is stored in a file named
type#cubist which holds all the instances of class :cubist.
This partitioning is performance-wise interesting for the pred-
icate :type, because the object of such triples is an RDFS
class and the number of distinct classes appearing in the ob-
ject position of :type triples is typically moderate. Clearly,
such a partitioning is less interesting for properties having a
large number of distinct object values, as this would lead to
many small files in the DFS. Since the load at the server in
charge of a HDFS cluster (the so-called namenode) is pro-
portional to the number of files, a partitioning which leads
to many small ones is better avoided.

HadoopRDF [46, 45] goes one step further by splitting
triples that have the same property based also on the RDFS
class the object belongs to (if such information exists). This
can be determined by inspecting all the triples having prop-

erty :type. For example, the triple (:picasso, :paints,
:guernica)would be stored in a file named paints#artifact
because of the triple (:guernica, :type, :artifact). This
grouping helps for query minimization purposes, as we shall
see in the next section.

An alternative vertical partitioning model could split triples
based on their subject or object value, instead of the prop-
erty. However, this would lead to a high number of very
small files because of the number of distinct subject or ob-
ject values appearing in RDF datasets, which is to be avoided
as explained above. In addition, most SPARQL queries spec-
ify the property in the triple patterns, while unspecified sub-
ject or object values are more common. Thus, property-based
partitioning is generally considered to make selective data
access more likely when processing queries, by giving di-
rectly access to the triples having a certain property value.

4.1.3 Entity class-based model

A different approach is proposed in EAGRE [92] where the
goal is to reduce the I/O cost incurred during query process-
ing, especially for queries with range filter expressions (such
as <,>) and order constraints (such as ORDERBY). A dis-
tributed I/O scheduling solution is proposed, for finding the
data blocks most likely to contain the answers to a query.
This scheduling is based on an entity-based compression
scheme for RDF. First, the RDF graph is transformed into
an entity graph where only nodes that have out-going edges
are kept. Each subject of the RDF triples of this graph is
called an entity. Entities with similar properties (according
to a similarity measure provided by the authors) are grouped
together into an entity class. The compressed RDF graph
contains only entity classes and the connections between
them (properties).

The discovery of the entity classes is performed in two
MapReduce jobs. Once they have been found, the entity
classes are interlinked locally at each node, based on the
connections of the entities they contain, and then, globally

8 Zoi Kaoudi, Ioana Manolescu

at a central node. The global compressed entity graph is then
partitioned using METIS [58], a well-known graph parti-
tioning tool. Entities then are placed according to the par-
tition set they belong to.

The storage layout at each node is designed with two
purposes: (i) given a query, find the data block of the triples
matching the query and (ii) sort triples based on property
or object values, so that queries with result order constraints
can be efficiently answered. For these reasons, entities in
a class having similar property-object values are viewed as
high-dimensional data records, and are indexed according
to a specialized multidimensional indexing technique [47],
based on the so-called space filling curves. This is a Hilbert-
inspired method of mapping a multidimensional space along
fewer or a single dimension, so that data indexing can be
performed (and the index exploited) more efficiently.

4.2 Storing and indexing RDF data in key-value stores

Key-value stores provide efficient, fine-grained storage and
retrieval of data, well suited to the small granularity of RDF.
We classify works in this area into triple-based and graph-
based ones: the former treat RDF data as a collection of
triples, while the latter adopt a graph perspective.

4.2.1 Triple-based RDF key-value stores

RDF indexing has been thoroughly studied in a centralized
setting [60, 88]. Given the nature of RDF triples, many com-
mon RDF indices store in fact all the RDF dataset itself,
eliminating the need for a “store” distinct from the index.
Thus, indexing RDF data in a key-value store coincides with
storing it there.
Notations. We will use the following notations. To index
RDF the values of subjects (S), predicates (P) and objects
(O) are used. We may also use the three token strings S, P
and O to differentiate data that needs to be treated as a sub-
ject, predicate, and object, respectively. We use the symbol
‖ to denote string concatenation and ε for the empty string.

We denote an indexing scheme in a key-value store by a
concatenation of three |-separated symbols (K|A|V), speci-
fying (i) which piece of data is the item key (K), (ii) which
is the attribute name (A) and finally (iii) which is the at-
tribute value (V). In the case of extended key-value stores,
we denote by {SA} the superattributes.

In contrast to most centralized RDF stores, which use
an extensive indexing scheme, systems relying on key-value
stores use only some of the possible indices. For instance,
centralized stores such as Hexastore [88] and RDF-3X [60]
use all 3! = 6 permutations of subject, predicate, object to
build indices that provide fast data access for all possible
triple patterns and for efficiently performing merge-joins.

Table 2: SPO index in a key-value store with a hash index.
item key (attr. name, attr. value)
:picasso (:paints, :guernica), (:name, "Pablo"),

(:type, :cubist)
:rodin (:creates, :thethinker), (:name, "Auguste"),

(:type, :sculptor)
:guernica (:exhibited, :reinasofia), (:type, :artifact)
:thethinker (:exhibited, :museerodin)
:reinasofia (:located, :madrid)
:museerodin (:located, :paris)
:Cubist (:sc, :painter)
:Sculptor (:sc, :artist)
:Painter (:sc, :artist)

RDF-3X [60] additionally uses aggregated indices on sub-
sets of the subject, predicate, object, resulting in a total of 15
indices. However, this extensive indexing scheme has a sig-
nificant storage overhead, which is amplified in a distributed
environment (where data is replicated for fault-tolerance).
As a consequence, the majority of existing RDF systems
built on top of key-value stores use three indices, which turn
out to be sufficient for providing efficient access paths to all
possible triple patterns. The three permutations massively
used by today’s systems are: subject-predicate-object (SPO),
predicate-object-subject (POS) and object-subject-predicate
(OSP). Typical key-value RDF stores materialize each of
these permutations in a separate table (or collection).

Depending on the specific capabilities of the underly-
ing key-value store, different designs have been chosen for
the key and values. For example, each one of the triple’s
elements s, p, o can be mapped to the key, attribute name
and value of the key-value store, or a concatenation of two
or even three of the elements can be used as the key. One
of the criteria to decide on the design is whether the key-
value store offers a hash-based or sorted index. In the first
case, only exact lookups are possible and thus, each of the
triples’ element should be used as the key. In the latter case,
combinations of the triples’ element can be used since prefix
lookup queries can be answered.

Table 2 shows a possible design for the SPO index in
a hash-based key-value store using the RDF running exam-
ple of Figure 1. Subjects are used as the keys, predicates are
used as the attribute names and objects as the attribute val-
ues. Similarly, indices POS and OSP are constructed. When
the key-value store offers a sorted index on the key, any con-
catenation of the triples’ elements can be used as the key.
The order in which the elements are concatenated is deter-
mined by the type of index (whether it is SPO, POS or OSP).
For instance, an extreme case for the SPO index uses the
concatenation of all three triples’ elements as the key, while
the attribute names and values are empty.

Representative systems using key-value stores as their
underlying RDF storage facility include Rya [68] which uses
Apache Accumulo [7], CumulusRDF [55] based on Apache
Cassandra [8], Stratustore [78] relying on Amazon’s Sim-

RDF in the Clouds: A Survey 9

Table 3: Indices used by RDF systems based on key-value stores.
System Key-value store Index type SPO POS OSP
Rya [68] Accumulo [7] Sorted SPO|ε|ε POS|ε|ε OSP|ε|ε
H2RDF [66] HBase [10] Sorted SP|O|ε PO|S|ε OS|P|ε
AMADA [11] DynamoDB [13] Hash S|P|O P|O|S O|S|P
MAPSIN [76] HBase [10] Sorted S|P|O - O|S|P
Stratustore [78] SimpleDB [13] Hash S|P|O - -
CumulusRDF-hierarchical [55] Cassandra [8] Hash/Sorted S|{P}O|ε P|{O}S|ε O|{S}P|ε
CumulusRDF-flat [55] Cassandra [8] Hash/Sorted S|PO|ε PO|S|ε O|SP|ε

PO|P|P

pleDB [13], H2RDF [66], built on top of HBase [10] and
AMADA [11] which uses Amazon’s DynamoDB [29].

Table 3 outlines for each system the key-value store used,
the type of index data structure provided by the key-value
store, and the indices created by the RDF storage platform
within the store. Observe that in some cases some data posi-
tions within the key-value stores are left empty (ε).

An important issue in such approaches is the high skew
encountered in the distribution of the property values, i.e., some
property values appear very frequently in the RDF datasets.
In this case, a storage scheme using the property as the key
leads to a table with a few but very large rows. Because in
HBase, and other key-value stores, all the data of a row is
stored at the same machine, machines corresponding to very
popular property values may run out of disk space and fur-
ther cause bottlenecks when processing queries. For this rea-
son, MAPSIN discards completely the POS index, although
techniques for handling such skew, e.g., splitting the long
list to another machine [3] are quite well understood by now.
To handle property skew CumulusRDF, built on Cassandra,
builds a different POS index. The POS index key is made of
the property and object, while the subject is used for the at-
tribute name. Further, another attribute, named P, holds the
property value. The secondary index provided by Cassandra,
which maps values to keys, is used to retrieve the associated
property-object entries for a given property value. This so-
lution prevents overly large property-driven entries, all the
while preserving selective access for a given property value.

4.2.2 Graph-oriented storage

A very recent key-value store for RDF is Trinity.RDF [91],
proposed by Microsoft. Trinity.RDF is a graph-based RDF
engine, which, unlike the systems described above, consid-
ers RDF graphs holistically at the level of the storage. The
underlying storage and indexing mechanism is Trinity [77],
a distributed graph system built on top of an in-memory key-
value store. An RDF graph is split in disjoint parts among
the cluster machines by hashing the values of the nodes of
the RDF graph (subjects and objects of RDF triples). Fig-
ure 8 depicts a possible partitioning of the RDF graph of
Figure 1 in a cluster of two machines.

:picasso :guernica:paints

:name

"Pablo"

:exhibited :reinasofia

:located

:madrid

:rodin

:creates

:thethinker
:exhibited

:museerodin

:located

:paris

:name

"Auguste"

node 1

node 2

Fig. 8: Trinity.RDF graph partitioning in a 2-machines
cluster.

Because some edges inevitably will connect nodes from
distinct partitions, each machine will also store some such
edges, that are outgoing from the resources assigned to that
machines. In other words, these are triples whose subject
URI is part of that machine’s partition, while the object URI
is not.

Within each machine, the URIs (or constants) labeling
the RDF graph nodes are used as keys, while two adjacency
lists are stored as values: one of the incoming edges and
another for the outgoing ones. In our classification, this cor-
responds to an SPO and an OPS index, respectively. Since
these two indices do not allow retrieving triples by the value
of their property, e.g., to match (?x, :name, ?y), Trin-
ity.RDF comprises a separate index whose keys are the prop-
erty values, and whose values are two lists, one with the
subjects and another with the objects of each property. This
approach amounts to storing the indices PS and PO, in our
notation.

Table 4 illustrates the RDF graph partitioning of Figure 8
in the key-value store of Trinity. Each node in the graph is
stored as a key in one of the two machines together with
its incoming and outgoing edges; graph navigation is im-
plemented by lookups on these nodes. The example shown
in Table 4 is the simplest way of RDF indexing in Trinity,
where IN and OUT denote the lists of incoming and outgo-
ing edges, respectively. In [91], the authors propose a fur-
ther modification of this storage model aiming at decreas-
ing communication costs during query processing. This is
achieved by partitioning the adjacency lists of a graph node

10 Zoi Kaoudi, Ioana Manolescu

Table 4: Indexing in Trinity.RDF in a 2-machines cluster: key-value store at machine 1 (left) and machine 2 (right).
Key Value
:picasso OUT(:paints, :guernica)

OUT(:name,"Pablo")
:guernica IN(:paints, :picasso)

OUT(:exhibited,:reinasofia)
:reinasofia IN(:exhibited, :guernica)

OUT(:located, :madrid)
:rodin OUT(:creates, :thethinker)

OUT(:name,"Auguste")
:paris IN(:located,:museerodin)
:paints {:picasso}, {:guernica}
:name {:picasso, :rodin}, {-}
:located {:reinasofia}, {:paris}
:exhibited {:guernica}, {:reinasofia}
:creates {:rodin}, {-}

Key Value
:marid IN(:located, :reinasofia)
:museerodin IN(:exhibited, :thethinker)

OUT(:located, :paris)
:thethinker IN(:creates,:rodin)

OUT(:exhibited,:museerodin)
"Pablo" IN(:name,:picasso)
"Auguste" IN(:name,:rodin)
:located {:reinasofia}, {:madrid}
:creates {-}, {:thethinker}
:exhibited {:thethinker}, {:museerodin}
:name {-}, {"Pablo","Auguste"}

by machine so that only one message is sent to each machine
regardless of the number of neighbours of that node.

4.3 Federating multiple centralized RDF stores

This category comprises systems that exploit in parallel a set
of centralized RDF stores distributed among many nodes.

These systems have a master/slave architecture, where
the master is responsible for partitioning and placing the
RDF triples in the slave nodes. Each slave node stores and
indexes its local RDF triples in a centralized RDF store.
The goal is to partition the RDF data in a way that enables
high parallelization during query evaluation while striving
to minimize communication among the slave nodes. Such
approaches include [37, 43, 44].

[44] was the first work to follow this path. RDF graphs
are partitioned by METIS [58], which splits the vertices of a
graph into k partitions so that a minimum number of edges
is cut (an edge cut occurs when the subject and object of
a triple are assigned to different partitions). The number of
partitions k is the number of available slave nodes. Triples
whose predicate value is :type are removed from the parti-
tioning process as they reduce the quality of the graph parti-
tioning.

Assuming that we have four nodes available, Figure 9(a)
shows a possible output of METIS for the RDF graph of
Figure 1. Placement is done by assigning the triple to the
partition to which its subject belongs (referred as directed
1-hop guarantee) or by assigning the triple to the partitions
of both its subject and the object (referred as undirected 1-
hop guarantee). To further reduce communication network
during query evaluation, the authors of [44] allow for even
more replication of those triples that are at partition bound-
aries. A directed (undirected) n-hop guarantee can be ob-
tained through replication; it ensures that any triples form-
ing a directed (undirected) path of length n will be located
within the same partition. Figures 9(b) and 9(c) depict the
placement of triples to the four partitions with undirected 1-

hop and 2-hop guarantee, respectively. The triple placement
algorithm is performed with Hadoop jobs, while the local
triples at each node are stored in RDF-3X [60].

WARP [43] extends the partitioning and replication tech-
niques of [44] to take into account a query workload in order
to choose the parts of RDF data that need to be replicated.
Thus, rarely-used RDF data does not need to be replicated,
leading to a reduced storage overhead compared to the one
of [44].

Partout [37] is a distributed RDF engine also concerned
with partitioning RDF, inspired by a query workload, so that
queries are processed over a minimum number of nodes.
The partitioning process is split in two tasks: fragmentation,
i.e., split the triples into pieces, and fragment allocation,
i.e., in which node each piece will be stored. The fragmen-
tation is based on a horizontal partitioning of the triple re-
lation based on the set of constants appearing in the queries
while the fragment allocation is done so that most of the
queries can be executed locally at one host but at the same
time maintaining load balancing. This is done by counting
for each fragment the queries that need to access it, as well
as the triples matching the fragment. The triple partitioning
process takes into consideration load imbalances and space
constraints to assign the partitions to the available nodes.

Finally, in [90], HadoopDB [4] is used, where RDF triples
are stored in a DBMS at each node. Triples are stored using
the vertical partitioning proposed in [1], i.e., one table with
two columns per property. Triple placement is decided by
hashing the subjects and/or objects of the triples according
to how the properties are connected in the RDF Schema. If
the RDF Schema is not available, a schema is built by ana-
lyzing the data at loading time.

4.4 Hybrid approaches

In the third category, we classify systems which exploit a
combination of a distributed file system, a key-value store
and a centralized RDF store. Such a system is AMADA [11,

RDF in the Clouds: A Survey 11

:picasso :guernica:paints

:name

"Pablo"

:exhibited
:reinasofia :located :madrid

:rodin :creates :thethinker
:exhibited :museerodin :located :paris

:name

"Auguste"

partition 1 partition 2

partition 3 partition 4

(a) METIS [58] output

:picasso :guernica:paints

:name

"Pablo"

:exhibited
:reinasofia :located :madrid

:rodin :creates :thethinker
:exhibited :museerodin :located :paris

:name

"Auguste"

partition 1
partition 2

partition 3
partition 4

(b) 1-hop undirected guarantee

:picasso :guernica:paints

:name

"Pablo"

:exhibited
:reinasofia :located :madrid

:rodin :creates :thethinker
:exhibited :museerodin :located :paris

:name

"Auguste"

partition 1
partition 2

partition 3
partition 4

(c) 2-hop undirected guarantee

Fig. 9: Partitioning and placement of [44].

22, 21], which is built upon services provided by commer-
cial clouds. In AMADA, RDF data is stored in a distributed
file system, and the focus is on efficiently routing queries
to only those datasets that are likely to have matches for
the query. Selective query routing reduces the total work
associated to processing a query; in a cloud environment,
this also translates in financial cost savings. Thus, AMADA
takes advantage of: large-scale stores for the data itself; the
fine-grained search capabilities of a fast key-value store for
efficient query routing and an out of the box centralized
RDF store for caching relative datasets and efficiently an-
swer queries.

AMADA stores RDF datasets within Amazon’s Simple
Storage Service (S3), a distributed file system for raw (file)
storage. Then, indices are built in Amazon’s key-value store,
DynamoDB [33]. These indices differ from the ones of Sec-
tion 4.2 because they are used for mapping RDF elements to
the RDF datasets containing them and not for indexing RDF
triples themselves. For example, following the notation in-
troduced in Section 4.2, the index S|D|ε shows which sub-
ject values S can be found in which RDF datasets D. Similar
indices are used for property and object values or a combi-
nation of them. In [21] the following indexing schemes are
proposed and experimentally compared:

– Term-based indexing which uses the index T|D|ε, where
T is any RDF term regardless of its position.

– Attribute-based indexing which uses three indices: S|D|ε,
P|D|ε, O|D|ε.

– Attribute-subset indexing which uses seven indices: S|D|ε,
P |U |ε, O|U |ε, SP |U |ε, PO|U |ε, SO|U |ε, SPO|U |ε.

The indices outlined above enable efficient query pro-
cessing in AMADA through routing incoming queries (only)
to those the dataset(s) that may have useful results, as we ex-
plain in the next section. These datasets are then loaded in a
centralized RDF store.

4.5 Summary

Table 5 summarizes the back-end and storage layout schemes
used by the RDF stores. For each work, we also present the
benefit of its chosen storage scheme, outlining three classes
of back-ends used for storing RDF triples: distributed file
systems, key-value stores and centralized RDF stores.

We observe that almost all systems based on a key-value
store adopt a 3-index scheme, more precisely: SPO, POS,
and OSP. Trinity.RDF [91] is the exception, with its second-
level index as described above. Finally, the only works that
consider a query workload for the partitioning process are
WARP [43] and Partout [37].

5 Cloud-based SPARQL query processing

A second important angle of analysis of cloud-based RDF
platforms comes from their strategy for processing SPARQL
queries. From this perspective, we identify the following
main classes:

– systems following a relational-style query processing strat-
egy; and

12 Zoi Kaoudi, Ioana Manolescu

Table 5: Comparison of storage schemes.

System Storage back-end Storage layout/partitioning Benefit
SHARD [72] DFS Triple-based files (1 line for each subject) Simplify storage
PigSPARQL [75] DFS Triple-based files (1 line for each triple) Simplify storage
HadoopRDF [46, 45] DFS Property-based files Reduce I/O and data processing
RAPID+ [70, 51] DFS Property-based files Reduce I/O and data processing
Zhang et al. [93] DFS Property-based files Reduce I/O and data processing
EAGRE [92] DFS Graph partitioning (METIS) on compressed entity graph Reduce I/O and data processing
H2RDF [66] Key-value store 3 indices (SPO, POS, OSP) Fast data access
Rya [68] Key-value store 3 indices (SPO, POS, OSP) Fast data access
AMADA [21, 11, 22] Key-value store 3 indices (SPO, POS, OSP) Fast data access
MAPSIN [76] Key-value store 3 indices (SPO, POS, OSP) Fast data access
Stratustore [78] Key-value store 1 index (SPO) Fast data access
CumulusRDF [55] Key-value store 3 indices (SPO, POS, OSP) Fast data access
Trinity.RDF [91] Key-value store Graph-based indexing (SPO, OPS, PS, PO) Fast data access
Huang et al. [44] Centralized RDF store Graph partitioning by METIS Reduce communication cost
WARP [43] Centralized RDF store Graph partitioning based on query workload Reduce communication cost
Partout [37] Centralized RDF store Horizontal fragmentation based on query workload Reduce communication cost
Wu et al. [90] Centralized RDBMS Hash-based horizontal partitioning and Reduce communication cost

property-based relations on each node

– systems using graph exploration techniques based on the
graph structure of the data.

While there is only one work that uses graph techniques,
many works have relied on relational processing strategies.
We present them below.

5.1 Relational-style SPARQL query processing in the cloud

Works in this category can be classified according to the tax-
onomy of Figure 10. From a database perspective, two are
the basic operations in evaluating a SPARQL query: (i) data
access paths and (ii) join evaluation. The first operation con-
sists of retrieving from the storage data matching some frag-
ment of the query (for instance, one or several triple pat-
terns), while the latter determines how these pieces are joined
to form the final answer.

The platforms on which the systems we survey are built
provide a big opportunity for parallelizing query processing
and thus, for achieving better query performance. For this
reason query decomposition techniques need to be revised
to tackle this challenge. In addition, for efficiency reasons,
query processing in distributed architectures should reduce
the shuffling of data between nodes. We provide more details
on these aspects in Section 5.1.2.

5.1.1 Data access paths

The data access paths available to the query engine are di-
rectly determined by the underlying storage facility. We cat-
egorize them accordingly.

Distributed file systems. When RDF data is stored in a dis-
tributed file system, one can only scan files for the triples
that match a given triple pattern.

In systems that store RDF data according to the triple
model described in Section 4.1.1, all the files are scanned
and a selection operation is performed to match the triple
pattern. In [71, 75] the selection is performed in the map
phase of the corresponding MapReduce job.

In systems based on the vertical partitioning (Section 4.1.2),
triple pattern matching is performed by selecting the files
named after the property of the triple pattern. If the subject
and/or object of the triple pattern is also constant (specified
by the query), the corresponding selection conditions are en-
forced on the data retrieved from those files. In [46, 70, 93]
the selection is performed in the corresponding map phase.
As in the case of centralized stores, this kind of partitioning
works well in the cases of triple patterns with a bound pred-
icate. Such triple atoms have been reported to be frequent
in real-world SPARQL queries, amounting to about 78% of
the DBPedia query log and 99.5% of the Semantic Web Dog
query log according to [12]. However, when the property at-
tribute of a triple pattern is unbound, all files residing in the
DFS need to be scanned.

An interesting aspect of HadoopRDF [46] data access
can be seen as a form of query minimization during the file
selection process. For a triple pattern t1 = (s1, p1, o1) where
p1 is distinct from :type and o1 a variable, HadoopRDF
checks if the type of the object is specified by another triple
pattern t2 = (o1,:type, o2) in the query. If this is the case,
the selected file is only p1#o2, and t2 is removed from the
query. Otherwise, all files prefixed with p1 are selected.

In EAGRE [92] a distributed I/O scheduling solution is
proposed for reducing the I/O cost incurred before the fil-
tering of the map phase, especially for queries with range
and order constraints. Query evaluation is postponed until
the I/O scheduling has determined which are the data blocks

RDF in the Clouds: A Survey 13

Relational-style query processing

Data access paths Join evaluation

Scan DFS
Lookup

key-value store

Query
centralized store

MapReduce-based Non-MapReduce

Left-deep trees Bushy trees Local
evaluation

Distributed
query plan

Fig. 10: Taxonomy of relational-style query processing strategies.

that contain answers to a given query (and thus, need to be
scanned).

Key value stores. When RDF triples are stored in a key-
value store, triple pattern matching becomes more efficient
due to the indexing capabilities.

Access paths depend on the way RDF data is indexed
in the key-value store and the kind of index the underlying
key-value store supports (hash- or sorted index). If it is a
hash index, a direct lookup is necessary to retrieve the values
of a given key; in contrast, if it is a sorted index, a prefix
lookup is also possible. In some cases, post-processing is
required after the lookup to further filter out triples which
do not match the triple pattern.

Table 6 shows the access paths provided by each such
system, for each possible query triple pattern template. We
denote by DL(T) a direct lookup to a table T, by PL(T)
a prefix lookup and by S(T) a scan over the whole table
T. In addition, we use csel to denote that an extra selec-
tion operation is required at the client side, while ssel spec-
ifies when the selection can be performed on the server side
(where the key-value store is located). In the case of Stratus-
tore where SimpleDB is used, there is also the possibility of
SELECT queries which return keys and values by specifying
the columns. We denote such cases by SDB(T).

For a boolean triple pattern (all its elements are con-
stants) a direct lookup to any of the available tables can be
performed and then (depending on the indexing strategy) a
selection may be needed. Similarly, for a variable-only triple
pattern, a scan over any of the available tables is suitable. For
the remaining possible combinations of variables, constants
and URIs in triple patterns, we may need to perform either a
direct lookup, or a direct lookup with some post-filtering, or
a prefix lookup.

Federated centralized RDF stores. Huang et al. [44] and
WARP [43] aim at pushing as much as possible query pro-
cessing to the centralized RDF stores available on each node.
After the SPARQL query has been decomposed into sub-
queries, data access is implemented by sending each sub-
query to all instances of the RDF store in parallel. This is

necessary since there is no index to map the data to the par-
titions it belongs. For instance, if the undirected 2-hop guar-
antee of [44] is provided by the store (Figure 9(c)), the query
of Figure 4 can be evaluated by sending it to all four parti-
tions. If a query cannot be completely answered from the
underlying store, further joins are required to combine the
subquery results, as we explain in the next section.

While [43, 44] lack indices for routing the subqueries
to the partitions containing results, Partout [37] identifies
the nodes that are relevant to a specific triple pattern at the
coordinator node. It builds mappings of terms appearing in
the query workload to nodes during the partitioning, and ex-
ploits it afterward for query processing.

All these three works use RDF-3X [60] as the underly-
ing storage for each partition. As a consequence, local data
access is efficiently supported for each triple pattern in the
query, based on the local indices built by RDF-3X on all
(combinations of) triple elements.

Finally, in [90] SPARQL queries are also decomposed
into subqueries, based on the data partitioning. The sub-
queries are translated into SQL queries and sent for eval-
uation to the underlying RDBMS of HadoopDB [4].

Hybrid approaches. AMADA [11, 21, 22] uses a hybrid ap-
proach where data resides in files in a cloud-store, indices
pointing to the files are kept in a key-value store, while a
centralized RDF store loads and evaluates the query at run-
time. Query processing is achieved by identifying a (hope-
fully tight) superset of the RDF datasets which contain an-
swers to a given query, based on the available indices (see
Section 4.4). Then, the selected RDF datasets are loaded at
query time in a centralized state-of-the-art RDF store which
gives the answer to the query.

5.1.2 Join evaluation

A first aspect we consider is the method used to implement
(potentially distributed) joins. These are natively not sup-
ported in key-value stores, nor in the MapReduce frame-
work. For this reason, very early works on indexing RDF in
key-value stores do not handle joins; for instance, Cumulus-
RDF [55] supports only single triple pattern queries. Among

14 Zoi Kaoudi, Ioana Manolescu

Table 6: Triple pattern access paths in key-value stores.

Triple pattern Rya [68] H2RDF [66] AMADA [11] MAPSIN [76] Stratustore [78] CumulusRDF hi-
erarchical [55]

CumulusRDF
flat [55]

(s, p, o) DL(*) DL(*)+csel DL(*)+csel DL(*)+ssel DL(*)+csel DL(*)+csel DL(*)+csel
(s, p, ?o) PL(SPO) DL(SP|O) DL(S|P|O)+csel DL(S|P|O)+ssel DL(S|P|O)+csel 2×DL(S|{P}O|ε) DL+PL(S|PO|ε)
(s, ?p, o) PL(OSP) DL(OS|P) DL(O|S|P)+csel DL(O|S|P)+ssel DL(S|P|O)+csel 2×DL(O|{S}P|ε) DL+PL(O|SP|ε)
(s, ?p, ?o) PL(SPO) PL(SP|O) DL(S|P|O) DL(S|P|O) DL(S|P|O) DL(S|{P}O|ε) DL(S|PO|ε)
(?s, p, o) PL(POS) DL(PO|S) DL(P|O|S)+csel DL(O|S|P)+ssel SDB(S|P|O) DL(P|{O}S|ε) DL(PO|S|ε)
(?s, p, ?o) PL(POS) PL(PO|S) DL(P|O|S) S(*)+ssel SDB(S|P|O) DL(P|{O}S|ε) DL(PO|P|P)+

DL(PO|S|ε)
(?s, ?p, o) PL(OSP) PL(OS|P) DL(O|S|P) DL(O|S|P) S(*)+csel DL(O|{S}P|ε) DL(O|SP|ε)
(?s, ?p, ?o) S(*) S(*) S(*) S(*) S(*) S(*) S(*)

the other systems, two join evaluation methods prevail: ei-
ther by using the MapReduce framework or by performing
the join out of MapReduce, often at a single site.

Another important aspect of parallel SPARQL join eval-
uation is the way a query is decomposed into subqueries to
be processed in parallel; this query decomposition stage is
often dictated by the data partitioning method. The query
decomposition can lead to either left-deep or bushy query
plans being built. The search space for finding the optimal
left-deep query plan is of size n! for a query with n triple
patterns. However, in a distributed/parallel setting, this ap-
proach only exploits intra-operator parallelism (evaluating
one operator in parallel), but lacks inter-operator parallelism
(evaluating multiple operators in parallel). Bushy trees are
better suited for parallel query processing since multiple op-
erators can be evaluated in parallel. However, the search
space of bushy query plans is exponential in the size of the
query,O(n×2n) for star queries andO(3n) for path queries
(where n is the number of relations) [62]. Enumerating and
estimating the cost of such large plan sets can be inefficient
for large queries. For this reason, many of the works resort
to simple left-deep plans or use a hybrid of the two: plans
that are bushy only at the leaves level, while the intermedi-
ate relations are joined sequentially in a left-deep manner.
We term the latter leaf-bushy plans, and reserve the standard
bushy term for those that are bushy at all levels.

MapReduce-based joins. The first system to use MapRe-
duce for SPARQL query evaluation is SHARD [71]. In this
system, one MapReduce job is created for each triple pat-
tern, and an extra (last) job is created for removing redun-
dant results (if necessary) and projecting the corresponding
values. In the map phase of each job, the triples matching the
triple pattern are identified and sent to the reducers. In the re-
duce phase, the matched triples are joined with the interme-
diate results of the previous triple patterns (if any). Concep-
tually, SHARD’s query evaluation strategy leads to left-deep
query plans, which correspond to a sequence of MapReduce
jobs and to potentially long query evaluation time.

�p=:type^o:=artist

scan(⇤.rdf)

./?x

�p=:paints

�p=:exhibited

scan(⇤.rdf)

scan(⇤.rdf)

⇡?y,?z

job #1

job #2

job #3

job #4

scan(⇤.rdf)

�p=:located

job #5

./?y

./?z

Fig. 11: Left-deep query plan in MapReduce as produced
by SHARD [71].

Figure 11 shows how a left-deep query plan of the exam-
ple query of Figure 4 can be evaluated in MapReduce. Note
that for a 4-triple pattern query five jobs are required, while
all data is scanned 4 times.

In [75] the authors propose a mapping from full SPARQL
1.0 to Pig Latin [61], a higher-level close to the nested re-
lational algebra, providing primitives such as filter, join and
union; PigLatin is then compiled into MapReduce. Each triple
pattern is transformed into a Pig Latin filter operation, fol-
lowing which the corresponding data sets are joined in a se-
quence, also corresponding to a left-deep query plan. Left-
outer joins and unions are also used for more complex SPARQL
queries, featuring the OPTIONAL and UNION clauses. Stan-
dard optimization techniques like pushing projections and
selectivity-based join reordering are also used. Query evalu-
ation in [75] also leads to left-deep query plans.

In contrast with the above, the parallelization possibili-
ties offered by MapReduce make evaluation through bushy
plans attractive, since many operators can be evaluated in
parallel. Given that the full search space of bushy plans is
large, heuristics are often used to identify a plan close to the

RDF in the Clouds: A Survey 15

scan(⇤type artist.rdf)

./?x

scan(⇤paints.rdf)

scan(⇤exhibited.rdf) scan(⇤located.rdf)

�o=:paris

./?y

⇡?y,?z

./?z

job #1

job #2

Fig. 12: Bushy query plan in MapReduce as produced by HadoopRDF [46].

optimal. The heuristic used mostly in recent MapReduce-
based proposals is to produce a query plan that requires the
least number of jobs since the overhead of initializing a Map-
Reduce job is significant [27]. Although traditional selectivity-
based optimization techniques for finding optimal query plans
may decrease the intermediary results, they may also lead to
a growth in the number of jobs and thus, to worse query
plans with respect to query response time. Therefore, the ul-
timate goal of such proposals is to produce query plans in
the shape of balanced bushy trees with the minimum possi-
ble height.

HadoopRDF [46], H2RDF [66] and RAPID+ [51, 70]
are systems that try to achieve the above goal. A join among
two or more triple patterns is performed on the same sin-
gle variable. Within one job, one or more joins can be per-
formed as long as they are on different variables. When the
query has only one join variable, only one job suffices for
query evaluation. However, as this is not always the case,
query planning is required to output a sequence of MapRe-
duce jobs.

In HadoopRDF [45, 46] a heuristic is used to bundle as
many joins as possible in each job, leading to query plans
with few MapReduce jobs. The same heuristic is used in
H2RDF [66] for non-selective queries. Although H2RDF
stores the RDF data in a key-value store, it uses MapReduce
query plans to evaluate queries whose results are estimated
to be large and thus, benefit from parallelization.

Figure 12 demonstrates a possible query plan produced
by HadoopRDF for the example query of Figure 4. In the
first job, the joins on variables ?x and ?z are computed be-
tween the first and the last two triple patterns, respectively.
The second job joins the intermediate results of the first job
on variable ?y.

In RAPID+ [51, 70] an intermediate nested algebra is
proposed for increasing the degree of parallelism when eval-
uating joins and thus reducing the number of MapReduce
jobs. This is achieved by treating star joins (groups of triple
patterns having as subject the same variable) as groups of
triples and defining new operators on these triple groups.
Queries with k star-shaped subqueries are translated into

SELECT ?y ?z
WHERE {
?x :type :artist .
?x :paints ?y .
?y :exhibited ?z .}

SELECT ?z
WHERE {
?z :located :paris .}

./?z

⇡?y,?z

job #1

Fig. 13: Query plan as executed in Huang et al. [44].

a MapReduce program with k MapReduce jobs: 1 job for
evaluating all star-join subqueries and k − 1 jobs for join-
ing the subquery results thus obtained. Conceptually, such
query plans are leaf-level bushy plans since the intermedi-
ary results of the star-join subqueries are evaluated pair-wise
and sequentially. The proposed algebra is integrated with
Pig Latin [61]. In [52], the authors extend RAPID+ with a
scan sharing technique applied in the reduce phase to opti-
mize queries where some property value appears more than
once.

In [76] a Map-side index nested loops algorithm is pro-
posed for joining triple patterns. The join between two triple
patterns is computed in the Map-phase of a job by retrieving
from the key-value store values that match the first triple pat-
tern, and replacing the values found for the join variable in
the second triple pattern. For each value, the 2nd triple pat-
tern is rewritten and the corresponding lookup is performed
in the key-value store. No shuffle or reduce phases are re-
quired. As an optimization, the triple patterns that share a
common variable on the subject (or object) are grouped and
evaluated at once in a single Map phase.

In Huang et al. [44] complex queries, which cannot be
evaluated completely by the underlying RDF store due to
the partitioning scheme, are evaluated within MapReduce
for joining the results from different partitions. A query is
decomposed in subqueries that can be evaluated indepen-
dently at every partition and then the intermediary results
are joined through MapReduce jobs sequentially. This cre-

16 Zoi Kaoudi, Ioana Manolescu

ates leaf-level bushy trees, and leads to as many MapReduce
jobs as there are subqueries. Figure 13 shows how the ex-
ample query of Figure 4 is evaluated based on a partitioned
store providing the 1-hop guarantee shown in Figure 9(b).
The query is decomposed into two subqueries; the first one
contains three triple patterns, while the second one contains
only the last triple pattern. The results from the two sub-
queries are joined in a MapReduce job. A similar approach
is followed in [90], where subqueries are processed sequen-
tially (one job per subquery) and then are joined in a left-
deep tree manner (one job per join).

In [93] the authors propose a method for constructing a
tree which encapsulates all possible join plans that need to
be examined. Then, based on a cost model, the join plan with
the minimum cost is chosen by a top-down traversal of the
tree and by pruning some of the non-optimal query plans.

In all the above works except [93], joins are evaluated
using the standard repartition join algorithm. In [93] either
the repartition or the broadcast join is used, depending on
whether the property file is small enough to fit into memory.
Finally, in [93] and [90] some pruning techniques are used to
reduce the number of intermediary results that are shuffled
in the network. In the former, the authors use Bloom filters
on the subjects or objects of small property files and in the
latter the minimum and maximum values of each variable in
a job are stored to be used in the subsequent jobs as a filter
condition in the SQL query.

Join evaluation outside MapReduce. Systems that execute
joins outside MapReduce store their data (i) in key-value
stores, or (ii) in centralized RDF stores over multiple nodes.

The former typically implement their own join opera-
tors, since key-value stores do not allow for operations across
tables (e.g., , joins). Often the evaluation of SPARQL queries
in such systems is done locally at a single site, outside of
the key-value store. For each triple pattern, the appropri-
ate lookups are performed within the key-value store, then
the results are joined to produce the final answer. Conceptu-
ally, such approaches lead to left-deep plans since no inter-
operator parallelism is used.

Rya [68] implements an index nested loops algorithm
using multiple lookups in the key value store, similar to [76]
but without using MapReduce. For the first triple pattern
t1, a lookup is performed to find bindings for its variables.
Then, for the remaining triple patterns ti, the k values from
the triple pattern ti−1 are used to rewrite ti. Then k lookups
are performed in the key-value store for ti. This procedure
is performed locally at the server. In AMADA [11], a query
with n triple patterns entails n lookups, whose results are
joined locally using an in-memory hash join.

An interesting case is H2RDF [66], which uses MapRe-
duce only for the non-selective queries. For selective queries
a centralized index nested loops algorithm is used, similarly

with Rya. Stratustore [78] poses a SimpleDB query for each
star-join, specifying in the WHERE clause if the attribute
name (property) should be equal to a value (object), col-
lects the keys (subjects) and attribute values (objects) speci-
fied in the SELECT clause and performs the appropriate joins
among them locally.

Distributed engines using centralized RDF stores over
multiple nodes also implement their own join operators for
joining the intermediary results of subqueries evaluated by
the RDF store, when necessary. For instance, in [43], for
queries that cannot be evaluated completely independently
at each partition, the intermediary results from each parti-
tion are gathered in the coordinator node where the joins are
performed in a left-deep plan.

In Partout [37] the coordinator is responsible for gen-
erating a query plan whose leaves are index scans of triple
patterns at the nodes containing relevant data. Because data
is stored in RDF-3X, results of the index scans are ordered
and thus, the inner operations are merge joins whenever both
inputs are ordered on the join attribute. If this is not the case,
the inputs need to be sorted or a hash join is used instead. A
join operator is executed at one of the nodes of its children,
following the optimizer’s decision.

5.2 Graph-based SPARQL query processing

Trinity.RDF [91] is based on a graph-structured store, and
thus it uses graph exploration instead of relational-style joins,
in order to evaluate SPARQL queries.

Data access paths. To match triple patterns, graph explo-
ration needs a constant subject or object (source value) to
start with. The node that contains the source value can eas-
ily be found through hashing. Then, this node retrieves the
nodes responsible of storing the target (object, or subject)
values, and sends these nodes a message.

For example, assume the graph partitioning shown in
Figure 8 and the triple pattern (:picasso, ?p, ?o). A mes-
sage is first sent to node 1 to determine the nodes holding the
object values :picasso; in our example, these are nodes 1
and 2. From node 1 we retrieve the object value :guernica,
while a message is sent to node 2 where the object value
"Pablo" is found.

If neither of the subject, object of the triple pattern are
constants, the POS index is used to find matches for the
given property. Graph exploration starts in parallel from each
subject (or object) found and by filtering out the target val-
ues not matching the property value. If the predicate is also
unbound, then every predicate is retrieved from the POS in-
dex.

For example, assume again Figure 8 and the triple pat-
tern (?s, :name, ?o). From the POS index (see Table 4)

RDF in the Clouds: A Survey 17

(?x, :type, :artist)
(:picasso, :paints, ?y)

(:rodin, :paints, ?y)

?x/:picasso

?x/:rodin

?y/:guernica

...

(:guernica, :exhibited, ?z)...
(:violon, :exhibited, ?z)

?z/reinasofia

...?y/:violon

(:reinasofia, :located, :paris)

…
…

…
…

Fig. 14: Graph exploration in Trinity.RDF for query in Figure 4.

two subject values are found: :picasso and :rodin. For
both of these values, the above procedure is again followed;
moreover, the object values :guernica and :thinker are fil-
tered out because the property value is not matched.

Join evaluation. For conjunctive queries, triple patterns are
processed sequentially through graph exploration. One triple
pattern is picked as the root and a chain of triple patterns is
formed. The results of each triple pattern guide the explo-
ration of the graph for the next one. This completely avoids
manipulating triple patterns that may match a triple but do
not match another one considered previously during query
evaluation. Figure 14 illustrates how the query of Figure 4 is
processed in Trinity.RDF, assuming the given triple pattern
evaluation order.

This graph exploration resembles the nested index loops
algorithm also used in Rya [68] and H2RDF [66] with the
difference that only the matches of the immediate neighbors
of a triple pattern are kept and not all the history of the triple
patterns’ matches during the graph exploration and thus, in-
valid results may be included in the results. For this reason,
a final join is required at the end of the process to remove
any invalid results that have not been pruned through the
graph exploration. This join typically involves a negligible
overhead.

Obviously, the order in which the triple patterns are eval-
uated significantly impacts performance. In [91] the authors
propose a cost-based optimization based on dynamic pro-
gramming and a selectivity estimation technique capturing
the correlation between pairs of triples, in order to select a
favorable triple pattern evaluation order.

5.3 Summary

Table 7 summarizes the query processing strategy of each
system. It shows the correlation of the data access paths with
the different join evaluation frameworks used. In addition, it
outlines the type of query plans conceptually created and
the type of join used by each system. In contrast with our
storage-based categorization, where each system fit in only
one category (Section 4.5), the query-based classification is
less clear-cut, with some systems pertaining to more than
one class. For example, H2RDF uses both a MapReduce-
based query evaluation and a local evaluation depending on

the query selectivity, while Huang et al. [44] use a hybrid
approach between MapReduce and evaluation on multiple
centralized RDF stores. We view this diversity as proof of
the current interest in exploring various methods – and their
combinations – for massively distributed RDF query pro-
cessing.

6 RDFS reasoning in the cloud

In Section 2 we introduced the role of inference (or reason-
ing) and the important place of entailed triples in an RDF
data management context. Generally, there are three meth-
ods to handle RDFS reasoning:

– closure computation: compute and materialize all en-
tailed triples;

– query reformulation: reformulate a given query to take
into account entailed triples;

– hybrid: some mix of the two above approaches.

The first method requires computing the closure prior to
query processing, while the second (reformulation) is exe-
cuted at query time. Finally, in the hybrid approach some
entailed data is computed statically and some reformulation
is done at query time. A comparison of these RDF reason-
ing methods can be found for a centralized setting in [38]
and for a distributed one in [48].

We classify the cloud-based systems that support RDFS
reasoning according to these three categories. We also con-
sider parallel/distributed approaches that were not necessar-
ily intended for the cloud but can be easily deployed therein.
The main challenge faced by these systems is to be com-
plete (answer queries by taking into account all the implicit
triples), even though the data is distributed. At the same
time, the total volume of shuffled data should be minimized,
not to degrade performance.

6.1 RDFS closure computation in the cloud

One of the most widely spread inference methods for RDF is
the precomputation and materialization of all entailed triples,
also called RDFS closure computation. This method works
in a bottom-up fashion; new RDF triples are exhaustively
generated based on the RDFS entailment rules and stored

18 Zoi Kaoudi, Ioana Manolescu

Table 7: Correlation of data access paths with join evaluation strategies.
(DFS: Distributed file system, KV: Key-value store, MR: MapReduce, L: Left-deep plans, B: Bushy plans, LB: Leaf-level

bushy plans, SRJ: Standard repartition join, BJ: Broadcast join

System Data access Join frame-
work

Plans Join method Comment

SHARD [72] DFS scan (all data) MR L SRJ
PigSPARQL [75] DFS scan (all data) MR L SRJ Translation of SPARQL

queries to PigLatin
HadoopRDF [46, 45] DFS scan (property files) MR B SRJ
RAPID+ [70, 51, 52] DFS scan (property files) MR LB SRJ Scan sharing for queries

with repeated properties
EAGRE [92] DFS scan (relevant blocks) MR N/A N/A
Zhang et al. [93] DFS scan (property files) MR B SRJ/BJ Bloom filters for pruning

intermediary results
MAPSIN [76] KV lookup MR (map-only) L Index nested loops
H2RDF [66] KV lookup Locally/MR L/B Index nested loops/SRJ Evaluation strategy de-

pends on query selectivity
Rya [68] KV lookup Locally L Index nested loops
AMADA [21, 11, 22] KV lookup Locally L Hash join
Stratustore [78] KV lookup Locally L N/A
CumulusRDF [55] KV lookup - - -
Huang et al. [44] SPARQL subqueries to

central RDF store
Locally/MR LB Central store/SRJ Depends on data replication

WARP [43] SPARQL subqueries to
central RDF store

Locally/MR LB Central store/SRJ Depends on data replication

Partout [37] SPARQL subqueries to
central RDF store

Distributed LB Merge/hash join

Wu et al. [90] SQL subqueries to
RDBMS

MR LB SRJ Min-max values for prun-
ing intermediary results

Trinity.RDF [91] KV store lookup Trinity L Traversal of RDF graph

:picasso :type :cubist map
reduce

:cubist

:cubist :sc :painter map

:rodin :type :sculptor map :sculptor

map
reduce

:picasso :type :cubist

:cubist :cubist :sc :painter

:rodin :type sculptor

:sculptor :sc :artist :sculptor :sculptor :sc :artist
:rodin :type :artist

:picasso :type :painter

Fig. 15: MapReduce-based application of rule i2 of Table 1.

until no more new triples can be produced. A query is then
evaluated on the RDFS closure and yields a complete an-
swer taking into account both the given RDF triples and the
entailed ones. Although this approach has minimal require-
ments during query answering, it needs a significant amount
of time and space to compute and store all inferred data. For
this reason, the parallel processing paradigm of MapReduce
is suitable for computing the RDFS closure.

One of the first works providing RDFS closure compu-
tation algorithms in a parallel environment is WebPie [84].
RDF data is stored in a distributed file system and the RDFS
entailment rules of Table 1 are used for precomputing the
RDFS closure through MapReduce jobs.

First, observe in Table 1 that the rules having two triples
in the body, imply a join between the two triples because
they have a common value. See, for example, rule s1 where

the object of the first triple should be the same as the sub-
ject of the second one. By selecting the appropriate triple at-
tributes as the output key of the map task, the triples having
a common element will meet at the same reducer. Then, at
the reducer the rule can be applied to generate a new triple,
thus allowing to parallelize inference. Figure 15 illustrates
the application of rule i2 from Table 1 within a MapReduce
job. In the map phase, the triples are read and a key-value
pair is output. The key is the subject or object of the triple,
depending on its type, and the value is the triple itself. All
the triples generated with the same key meet at the same
reducer where the new triple is produced.

Second, entailed triples can also be used as input in the
rules. For instance, in the example of Figure 1 the entailed
triple (:picasso, :type, :painter) can be used to infer
the triple (:picasso, :type, :artist). Thus, to compute

RDF in the Clouds: A Survey 19

the RDFS closure, repeated execution of MapReduce jobs is
needed until a fixpoint is reached, that is, no new triples are
generated.

In WebPie [84] three optimization techniques are pro-
posed to achieve a fixpoint as soon as possible. The first one
starts by the observation that in each RDFS rule with a two-
triples body, one of the two is always a schema triple. Since
RDF schemas are usually much smaller than RDF datasets,
the authors of [84] propose to replicate the schema at each
node and keep it in memory. Then, each rule can be applied
directly either in the map phase or in the reduce phase of a
job, given that the schema is available at each node.

The second optimization consists of applying rules in the
reduce phase to take advantage of triple grouping and thus
avoid redundant data generation. If the rules are applied in
the map phase, many redundant triples can be generated. For
example, Figure 16(a) shows that for the application of rule
i3 in the map phase the same triple is produced three times.
On the other hand, Figure 16(b) demonstrates how rule i3
can be applied in the reduce phase causing no redundancy.

Finally, in [84] the authors propose an application order
for RDFS rules based on their interdependencies so that the
required number of MapReduce cycles is minimized. For
example, rule i3 depends on rule i1; output triples of i1 are
input triples of i3. Thus, it is more efficient to apply first rule
i1 and then i3. Thus, the authors show that one can process
each rule only once and obtain the RDFS closure with the
minimum number of MapReduce jobs.

At the same time as [84], the authors of [87] present a
similar method for computing the RDFS closure based on
the complete set of entailment rules of [42] in a parallel way
using MPI. In [87] they show that the full set of RDFS rules
of [42] has certain properties that allow for an embarrass-
ingly parallel algorithm, meaning that the interdependencies
between the rules can easily be handled by ordering them
appropriately. This means that the RDFS reasoning task can
be divided into completely independent tasks that can be ex-
ecuted in parallel by separate processes. Similarly with [84],
each process has access to all schema triples, while data
triples are split equally among the processes, and reasoning
takes place in parallel.

Finally, the authors of [84] have extended WebPie in [83]
to enable the closure computation based on the OWL Horst
rules [80].

6.2 Query reformulation

An alternative technique that has also been adopted for RDFS
reasoning is computing only the inferred information that is
related to a given query at query evaluation time. This in-
volves query reformulation based on the RDF schema and a
set of RDFS entailment rules. Thus, reformulation (also) en-

ables query answers to reflect both the given and the entailed
RDF triples.

Query reformulation works by rewriting each triple pat-
tern based on the RDF schema and the RDFS entailment
rules. This results in a union of triple patterns for each triple
pattern of the initial query. For instance, the single triple pat-
tern query q =(?x, :type, artist) should be rewritten
according to the RDF schema of Figure 1 and rule i2 as q′:

q′ = (?x, :type, :artist)∨(?x, :type, :painter)∨
(?x, :type, :cubist) ∨ (?x, :type, :sculptor)

Reformulating large conjunctive queries leads to syntac-
tically large and complex queries, for which many evalua-
tion strategies can be devised. Such a query can be evaluated
as a conjunction of unions of triple patterns, with the disad-
vantage of joining many intermediary results produced by
each union query; or, it can be evaluated as a union of con-
junctive queries, with the drawback of evaluating repeatedly
those fragments which are common across the conjunctive
queries. It is important to observe that such common frag-
ments are sure to exist, since each conjunctive query features
one atom from the reformulation of each initial query atoms.
As a simple example, consider a conjunctive SPARQL query
consisting atoms a1, a2 and a3, which are reformulated re-
spectively into the atom sets {a′1, a′′1}, {a′2, a′′2 , a′′′2 }, and
{a′3, a′′3}. This results into 2 × 3 × 2 = 12 conjunctive
queries, in other words:

qref =

a′1, a
′
2, a
′
3 ∪ a′1, a′′2 , a′3 ∪ a′1, a′′′2 , a′3 ∪

a′′1 , a
′
2, a
′
3 ∪ a′′1 , a′′2 , a′3 ∪ a′′1 , a′′′2 , a′3 ∪

a′1, a
′
2, a
′′
3 ∪ a′1, a′′2 , a′′3 ∪ a′1, a′′′2 , a′′3 ∪

a′′1 , a
′
2, a
′′
3 ∪ a′′1 , a′′2 , a′′3 ∪ a′′1 , a′′′2 , a′′3

It is easy to identify pairs of conjunctive queries in the
above reformulation qref sharing two atoms, e.g., a′1, a

′
2, a
′
3

and a′′1 , a
′
2, a
′
3, and yet another set of union terms in qref

share one atom. The repeated evaluation of such atoms is
one reason why query answering through reformulation may
be quite inefficient [38].

HadoopRDF [46] is the only system, among those previ-
ously mentioned, that injects some RDFS reasoning within
its query processing framework; it is based on the first ap-
proach described above. More specifically, query reformu-
lation is implicitly done during the selection of the files that
must be scanned in order to start processing the query. For
a given triple pattern, instead of scanning only the file that
corresponds to the predicate of that pattern, the files corre-
sponding to all the predicates occurring in the reformulated
triple pattern are scanned and then the query is processed as
described in Section 5.1. This leads to evaluating a conjunc-
tion of unions of triple patterns.

The RDFS reasoning process in [46] is based only on
the RDFS subclass hierarchy, which means among the rules
shown in Figure 1, only rules s1 and i2 are considered.

20 Zoi Kaoudi, Ioana Manolescu

s1 p1 o1 map

s1 p1 o2 map

p1 domain c1

s1 type c1

s1 type c1

(a) Map-side

s1 p1 o1 map

s1 p1 o2 map

s1 p1 o3 map

p1 domain c1

s1 type c1

p1s1

p1s1

p1s1

reduce

(b) Reduce-side

Fig. 16: Map-side and reduce-side application of rule i3 of Table 1 when schema triples are kept in memory.

6.3 Hybrid techniques

Existing proposals from the literature combine the above
reasoning approaches, that is: they precompute entailed triples
for some part of the RDF data, while reformulation may still
be performed at query time.

A common technique in this area is to precompute the
RDFS closure of the RDF schema so that query reformula-
tion can be made faster. This works well because the RDF
schema is usually very small compared to the data, it sel-
dom changes, and it is always used for the RDFS reasoning
process. This approach is followed in [68] and [85].

Rya [68] computes the entailed triples of the RDF schema
in MapReduce after loading the RDF data into the key-value
store, where the RDFS closure is also stored. One MapRe-
duce cycle is used for each level of the subclass hierarchy.

In QueryPie [85], the authors focus on the parallel evalu-
ation of single triple pattern queries according to OWL Horst
entailment rules [80], which is a superset of the RDFS en-
tailment rules. They build and-or trees where the or level is
used for the rules and the and level is used for the rules’ an-
tecedents. The root of the tree is the query triple pattern. To
improve performance, entailed schema triples are precom-
puted so that the and-or tree can be pruned. The system is
built on top of Ibis [14], a framework which facilitates the
development of parallel distributed applications.

Another hybrid approach that is introduced in [48] for
structured overlay networks and can be deployed in a cloud
is the use of the magic sets rule rewriting algorithm [15].
The basic idea is that, given a query, rules are rewritten us-
ing information from the query so that the pre-computation
of entailed triples generates only the triples required by the
query. The benefit of using the new rules in the bottom-up
evaluation is that it focuses only on data which is associ-
ated with the query and hence no unnecessary information
is generated. Such a technique is particularly helpful in ap-

plication scenarios where knowledge about the query work-
load is available, and therefore only the triples needed by the
workload are precomputed and stored.

6.4 Summary

Table 8 summarizes the works that either are focused on or
provide support for RDFS reasoning. The table spells out the
reasoning method implemented in each system, the underly-
ing framework on which reasoning takes place, the fragment
of entailment rules supported and the type of queries sup-
ported for query answering (if applicable). The works [83,
84, 87], which focus on closure computation, do not con-
sider query answering; one could deploy in conjunction with
any of them, any of the query processing algorithms pre-
sented in Section 5.

7 Qualitative comparison

Concluding our previous analysis, Figure 17 shows how the
systems surveyed so far can be classified according to two of
the dimensions we discussed, namely data storage and query
processing.

Along the data storage dimension, we identify: (i) cen-
tralized RDF stores, (ii) key-value stores and (iii) distributed
file systems. With respect to query processing, we distin-
guish: (i) processing queries locally at one or multiple nodes
(without inter-node communications), which supposes that
each node has the corresponding RDF query evaluation ca-
pabilities; (ii) implementing a fully distributed evaluation
engine on top of MapReduce, (iii) implementing a fully dis-
tributed evaluation engine on top of a parallel processing
framework other than MapReduce, and finally (iv) based on
graph partitioning and graph traversals.

RDF in the Clouds: A Survey 21

Table 8: Comparison of reasoning techniques.

System Reasoning technique Means for reasoning RDFS fragment Query answering
WebPie [84] Closure computation MapReduce minimal RDFS No
Weaver et al. [87] Closure computation MPI full RDFS No
WebPie [83] Closure computation MapReduce OWL Horst No
HadoopRDF [46] Query reformulation Pellet reasoner to find input files RDFS subclass only Conjunctive
Rya [68] Hybrid MapReduce RDFS subclass only Conjunctive
QueryPie [85] Hybrid Ibis framework OWL Horst Single triple patterns

The most popular options taken rely on DFS and Map-
Reduce; combining key-value stores with local query pro-
cessing is also quite popular. This is due to the facility with
which these architectures allow to store and process data
in large-scale distributed platforms, without the application
programmers having to handle issues such as fault-tolerance
and scalability. However, there are many combinations of
choices (of storage and processing) which could still be in-
vestigated.

Each option has its trade-offs. For instance, key-value
stores offer a fine-granularity indexing mechanism allow-
ing very fast triple pattern matching, however, they do not
rival the parallelism offered by MapReduce for processing
efficiently queries, and thus, most systems perform joins lo-
cally at a single site. Although this approach may be efficient
for very selective queries with few intermediate results, it is
not scalable for analytical-style queries which need to ac-
cess big portions of RDF data. For the latter, MapReduce
is more appropriate, especially if a fully parallel query plan
is employed. Approaches based on centralized RDF stores
are well-suited for star-join queries, since triples sharing the
same subject are typically grouped on the same site. Thus,
the centralized RDF engine available on that site can be
leveraged to process efficiently the query for the respective
data subset; overall, such queries are efficiently evaluated
by the set of single-site engines working in parallel. In con-
trast, path queries which need to traverse the subsets of the
RDF graph stored at distinct sites involve more communi-
cations between machines and thus their evaluation is less
efficient. Finally, it may be worth noting that a parallel pro-
cessor built out of a set of single-site ones leaves open issues
such as fault tolerance and load balancing, issues which are
implicitly handled by frameworks such as MapReduce.

Since each option of storage and processing has their
pros and cons, some works follow a hybrid solution fitting
more than one cell in our table. For instance, H2RDF [66]
and Huang et al. [44] adopt both a local and a MapReduce-
based query evaluation, while AMADA takes advantage of
all three storage facilities. Considering the variety of require-
ments (point queries versus large analytical ones, star versus
chain queries, updates etc.), a combination of techniques,
perhaps with some adaptive techniques taking into account
the characteristics of a particular RDF data set and work-
load, is likely to lead to the best performance overall.

Trinity.RDF [78]!
!

WARP [38]!
Partout [32]!

Huang et al.
[39]!
!

MAPSIN [65]!
H2RDF [57]!

!

SHARD [64]!
HadoopRDF [40]!

RAPID+ [62]!
PigSPARQL [66]!
Zhang et al. [80]!

Huang et al.
[39]!

WARP [38]!
AMADA

[34,11,21]!

H2RDF [57]!
Rya [59]!

Statustore [68]!
CumulusRDF [47]!

AMADA [34, 11, 21]!

AMADA !
[34,11, 21]!

Key-value
stores!

DFS!Centralized
RDF store!

Locally!

MapReduce!

Data storage!

Q
ue

ry
 (j

oi
n)

 p
ro

ce
ss

in
g!

Graph-based!

Other parallel!

Fig. 17: System classification in the two dimensions.

Table 9 summarizes the technical characteristics of each
system, such as: the underlying framework required to run,
the fragment of SPARQL it supports, whether reasoning is
supported, and the link to the source code, whenever this is
available.

8 Conclusions and open future directions

RDF has been successfully used to encode semi-structured
data in a variety of application contexts [82]; in particular,
an interesting class of RDF applications comes from the area
of Linked Data, where data sets independently produced can
be interconnected and interpreted together based on their us-
age of common resource identifiers (or URIs). Further, data
sets made for sharing are quite often endowed with explicit
schema descriptions, allowing a third party to interpret and
best exploit the data. RDF natively allows simple yet ex-
pressive and flexible schema descriptions by means of RDF
Schema (RDFS) statements, making it an ideal candidate for
data interoperability.

Efficiently processing large volumes of RDF data de-
feats the possibilities of a single centralized system. In this
context, recent research has sought to take advantage of the
large-scale parallelization possibilities provided by the cloud,
while also enjoying features such as automatic scale-up and
scale-down of resource allocation as well as some level of
resilience to system failures.

22 Zoi Kaoudi, Ioana Manolescu

Table 9: Technical aspects of the systems.

System Underlying framework SPARQL fragment Reasoning Source code
SHARD [72] Hadoop BGP - http://sourceforge.net/projects/shard-3store/

HadoopRDF [46, 45] Hadoop BGP X https://code.google.com/p/hadooprdf/

PigSPARQL [75] Hadoop/Pig Full SPARQL 1.0 - -
RAPID+ [70, 51, 52] Hadoop BGP - -
Zhang et al. [93] Hadoop BGP - -
MAPSIN [76] Hadoop/HBase BGP - -
H2RDF [66] Hadoop/HBase BGP - http://code.google.com/p/h2rdf/

EAGRE [92] Hadoop BGP+range filters - -
Rya [68] Accumulo BGP+time ranges X -
Stratustore [78] SimpleDB BGP - http://code.google.com/p/stratustore/

CumulusRDF [55] Cassandra Single triple pattern - -
AMADA [21, 11, 22] AWS BGP - http://cloak.saclay.inria.fr/research/amada/

Huang et al. [44] Hadoop/RDF-3X BGP - -
WARP [43] RDF-3X BGP - -
Partout [37] RDF-3X BGP - -
Wu et al. [90] HadoopDB BGP - -
Trinity.RDF [91] Trinity BGP - -

In this survey, we have focused on presenting the state-
of-the-art in the area of RDF data management in distributed
or parallel settings; some of the systems we survey have
been built specifically on the primitives of a commercial
cloud provider while others can be seen as distributed data
management systems that can be deployed in a cloud (but
also in a large-scale cluster architecture). We classified the
systems according to the way in which they implement three
fundamental functionalities: data storage, query processing,
and reasoning, detailed the existing solutions adopted to im-
plement each of these, and classified the existing systems
in the dimension space thus obtained. We observed a great
density of systems using MapReduce and DFS, as well as
NoSQL systems with local clients for performing more com-
plex tasks, presumably because such underlying infrastruc-
tures are very easy to use. We expect more mature systems
to be developed in the near future which may combine these
two building blocks or are based on their own infrastructure.

We currently find numerous open problems as the re-
search area of parallel RDF data management is only a few
years mature. Firstly, an important issue that needs to be
investigated concerns optimization techniques for statistics
gathering, query decomposition, and join ordering. Tech-
niques from the existing literature on distributed data man-
agement [65] can and should be adopted, to improve pro-
cessing performance and overall resource management.

RDFS reasoning is an essential functionality of the RDF
data model and it needs to be taken into account for RDF
stores to provide correct and complete query answers. While
some works investigated the parallelization of the RDFS clo-
sure computation, the area of query reformulation is so far
unexplored in a parallel environment for conjunctive RDF
queries. Query reformulation can benefit from techniques
for multi-query optimization like the ones proposed in [86,

34] and scan sharing [52], but adapting such techniques for
RDF data is not straightforward.

In addition, current works focus only on the conjunc-
tive fragment of SPARQL. Although this is the first step
towards RDF query processing, SPARQL allows for much
more expressive queries, e.g., queries including optional
clauses, aggregations and property paths3. New frameworks
for RDF style analytics have appeared [26], which may nat-
urally be adapted to a large-scale (cloud) context. Evaluating
such queries in a parallel environment is still an open issue.

As RDF data volumes increase, future systems should be
able to use only parts of RDF data to answer user queries.
This can be achieved by building indexes specific to RDF
for routing queries to specific data sets [11], or reducing
I/O [92], or by maintaining views on query results to be used
in subsequent requests. We believe these topics will attract
significant interest in the near future.

References

1. D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach.
SW-Store: a vertically partitioned DBMS for Semantic
Web data management. VLDB J., 18(2):385–406, 2009.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of
databases. Addison-Wesley, 1995.

3. S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and
C. Sun. XML processing in DHT networks. In ICDE,
pages 606–615, 2008.

4. A. Abouzeid, Bajda-Pawlikowski, D. K., Abadi, A. Sil-
berschatz, and A. Rasin. HadoopDB: An architectural
hybrid of MapReduce and DBMS technologies for ana-
lytical workloads. In VLDB, 2009.

3 http://www.w3.org/TR/sparql11-property-paths/

RDF in the Clouds: A Survey 23

5. F. N. Afrati and J. D. Ullman. Optimizing Multiway
Joins in a Map-Reduce Environment. IEEE Trans.
Knowl. Data Eng., 23(9), 2011.

6. Foto N. Afrati and Jeffrey D. Ullman. Optimizing Joins
in a Map-Reduce Environment. In EDBT, 2010.

7. Apache Accumulo. http://accumulo.apache.
org/, 2012.

8. Apache Cassandra. http://cassandra.
apache.org/, 2012.

9. Apache Hadoop. http://hadoop.apache.org/,
2012.

10. Apache HBase. http://hbase.apache.org/,
2012.

11. A. Aranda-Andújar, F. Bugiotti, J. Camacho-Rodrı́guez,
D. Colazzo, F. Goasdoué, Z. Kaoudi, and I. Manolescu.
Amada: Web Data Repositories in the Amazon Cloud
(demo). In CIKM, 2012.

12. M. Arias, J.D. Fernández, M.A. Martı́nez-Prieto, and
P. de la Fuente. An Empirical Study of Real-World
SPARQL Queries. In USEWOD, 2011.

13. Amazon Web Services. http://aws.amazon.
com/, 2012.

14. H. E. Bal, J. Maassen, R. V. van Nieuwpoort, N. Drost,
R. Kemp, N. Palmer, G. Wrzesinska, T. Kielmann,
F. Seinstra, and C. Jacobs. Real-World Distributed
Computing with Ibis. IEEE Computer, 43(8):54–62,
2010.

15. F. Bancilhon, D. Maier, Y. Sagiv, and J. D Ullman.
Magic sets and other strange ways to implement logic
programs (extended abstract). In PODS, 1986.

16. T. Berners-Lee. Linked data - design issues.
http://www.w3.org/DesignIssues/
LinkedData.html, 2006.

17. S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J.
Shekita, and Y. Tian. A Comparison of Join Algorithms
for Log Processing in MapReduce. In SIGMOD, 2010.

18. M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srini-
vas, P. Dantressangle, O. Udrea, and B. Bhattacharjee.
Building an efficient RDF store over a relational data-
base. In SIGMOD, pages 121–132, 2013.

19. D. Brickley and R.V. Guha. RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema. Technical report,
W3C Recommendation, 2004.

20. J. Broekstra and A. Kampman. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF
Schema. In ISWC, 2002.

21. F. Bugiotti, J. Camacho-Rodrı́guez, F. Goasdoué,
Z. Kaoudi, I. Manolescu, and S. Zampetakis. SPARQL
Query Processing in the Cloud. In A. Harth, K. Hose,
and R. Schenkel, editors, Linked Data Management.
Chapman and Hall/CRC, 2014.

22. F. Bugiotti, F. Goasdoué, Z. Kaoudi, and I. Manolescu.
RDF Data Management in the Amazon Cloud. In

DanaC Workshop (in conjunction with EDBT), 2012.
23. R. Cattell. Scalable SQL and NoSQL data stores. SIG-

MOD Record, 39(4):12–27, May 2011.
24. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for struc-
tured data. In OSDI, 2006.

25. E. Inseok Chong, S. Das, G. Eadon, and J. Srinivasan.
An efficient SQL-based RDF querying scheme. In
VLDB, 2005.

26. D. Colazzo, F. Goasdoué, I. Manolescu, and A. Roatiş.
RDF Analytics: Lenses over Semantic Graphs. In
WWW, 2014.

27. T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein.
Mapreduce online. In NSDI, 2010.

28. J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

29. G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s highly
available key-value store. In SOSP, pages 205–220,
2007.

30. J. Dittrich, J.-A. Quiane-Ruiz, A. Jindal, Y. Kargin,
V. Setty, and J. Schad. Hadoop++: making a yellow
elephant run like a cheetah (without it even noticing).
In PVLDB, pages 518–529, 2010.

31. J. Dittrich, J.-A. Quiane-Ruiz, S. Richter, S. Schuh,
A. Jindal, and J. Schad. Only aggressive elephants are
fast elephants. In PVLDB, pages 1591–1602, 2012.

32. C. Doulkeridis and K. Norvag. A survey of large-scale
analytical query processing in MapReduce. The VLDB
Journal, 2013.

33. DynamoDB. http://aws.amazon.com/
dynamodb/.

34. I. Elghandour and A. Aboulnaga. ReStore: Reusing Re-
sults of MapReduce Jobs. PVLDB, 5(6):586–597, 2012.

35. O. Erling and I. Mikhailov. RDF Support in the Virtu-
oso DBMS. Networked Knowledge - Networked Media,
pages 7–24, 2009.

36. I. Filali, F. Bongiovanni, F. Huet, and F. Baude. A Sur-
vey of Structured P2P Systems for RDF Data Storage
and Retrieval. T. Large-Scale Data- and Knowledge-
Centered Systems, 3:20–55, 2011.

37. L. Galarraga, K. Hose, and R. Schenkel. Partout: A Dis-
tributed Engine for Efficient RDF Processing. Technical
Report: CoRR abs/1212.5636, 2012.

38. F. Goasdoué, I. Manolescu, and A. Roatiş. Efficient
query answering against dynamic RDF databases. In
EDBT, 2013.

39. W3C OWL Working Group. OWL 2 Web Ontology
Language. W3C Recommendation, December 2012.
http://www.w3.org/TR/rdf-mt/.

24 Zoi Kaoudi, Ioana Manolescu

40. S. Harris, N. Lamb, and N. Shadbolt. 4store: The De-
sign and Implementation of a Clustered RDF Store. In
SSWS Workshop, 2009.

41. S. Harris and A. Seaborne. SPARQL 1.1 Query Lan-
guage. W3C Recommendation, http://www.w3.
org/TR/sparql11-overview/, 2013.

42. P. Hayes. RDF Semantics. W3C Recommenda-
tion, February 2004. http://www.w3.org/TR/
rdf-mt/.

43. K. Hose and R. Schenkel. WARP: Workload-Aware
Replication and Partitioning for RDF. In DESWEB
Workshop (in conjunction with ICDE), 2013.

44. J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
Querying of Large RDF Graphs. PVLDB, 4(11):1123–
1134, 2011.

45. M. Husain, L. Khan, M. Kantarcioglu, and B. M. Thu-
raisingham. Data Intensive Query Processing for Large
RDF Graphs Using Cloud Computing Tools. In IEEE
CLOUD, pages 1–10, 2010.

46. M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and
B. M. Thuraisingham. Heuristics-Based Query Process-
ing for Large RDF Graphs Using Cloud Computing.
IEEE Trans. on Knowl. and Data Eng., 2011.

47. J.K.Lawder and P.J.H.King. Using Space-filling Curves
for Multi-Dimensional Indexing. In British National
Conference on Databases: Advances in Databases,
2000.

48. Z. Kaoudi and M. Koubarakis. Distributed RDFS Rea-
soning over Structured Overlay Networks. Journal on
Data Semantics, 2013.

49. Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki,
M. Magiridou, and A. Papadakis-Pesaresi. Atlas: Stor-
ing, updating and querying RDF(S) data on top of
DHTs. Web Semantics: Science, Services and Agents
on the World Wide Web, 8(4), 2010.

50. Z. Kaoudi, K. Kyzirakos, and M. Koubarakis. SPARQL
Query Optimization on Top of DHTs. In ISWC, 2010.

51. H. Kim, P. Ravindra, and K. Anyanwu. From SPARQL
to MapReduce: The Journey Using a Nested Triple-
Group Algebra (demo). PVLDB, 4(12):1426–1429,
2011.

52. H. Kim, P. Ravindra, and K. Anyanwu. Scan-Sharing
for Optimizing RDF Graph Pattern Matching on Map-
Reduce. In IEEE Conference on Cloud Computing,
pages 139–146, 2012.

53. A. Kiryakov, B. Bishoa, D. Ognyanoff, I. Peikov, Z. Ta-
shev, and R. Velkov. The Features of BigOWLIM that
Enabled the BBC’s World Cup Website. In Workshop
on Semantic Data Management, 2010.

54. G. Klyne and J. J. Carroll. Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C Rec-
ommendation, 2004.

55. G. Ladwig and A. Harth. CumulusRDF: Linked Data
Management on Nested Key-Value Stores. In SSWS,
2011.

56. State of the LOD cloud. Available from:
http://www4.wiwiss.fu-berlin.de/
lodcloud/state/, 2011.

57. F. Manola and E. Miller. RDF Primer. W3C Recom-
mendation, February 2004.

58. METIS. http://glaros.dtc.umn.edu/gkhome/views/metis.
59. S. Muñoz, J. Pérez, and C. Gutierrez. Simple and Ef-

ficient Minimal RDFS. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, 7(3):220–234,
September 2009.

60. T. Neumann and G. Weikum. The RDF-3X Engine for
Scalable Management of RDF Data. VLDBJ, 19(1),
2010.

61. C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD, pages 1099–1110, 2008.

62. K. Ono and G. M. Lohman. Measuring the Complexity
of Join Enumeration in Query Optimization. In VLDB,
pages 314–325, 1990.

63. Marin Dimitrov (Ontotext). Semantic tech-
nologies from big data. http://www.
slideshare.net/marin_dimitrov/
semantic-technologies-for-big-data,
2012.

64. A. Owens, A. Seaborne, N. Gibbins, and M. Schrae-
fel. Clustered TDB: A Clustered Triple Store for Jena.
Technical Report, 2008.

65. T. Özsu and P. Valduriez. Principles of distributed da-
tabase systems. Springer, 2011.

66. N. Papailiou, I. Konstantinou, D. Tsoumakos, and
N. Koziris. H2RDF: adaptive query processing on RDF
data in the cloud (demo). In WWW, 2012.

67. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM Transaction Database
Systems, 34:16:1–16:45, September 2009.

68. R. Punnoose, A. Crainiceanu, and D. Rapp. Rya: A
Scalable RDF Triple Store for the Clouds. In Work-
shop on Cloud Intelligence (in conjunction with VLDB),
2012.

69. G. Raschia, M. Theobald, and I. Manolescu. Proceed-
ings of the first International Workshop On Open Data
(WOD), 2012.

70. P. Ravindra, H. Kim, and K. Anyanwu. An Intermediate
Algebra for Optimizing RDF Graph Pattern Matching
on MapReduce. In ESWC, pages 46–61, 2011.

71. K. Rohloff and R. E. Schantz. High-Performance, Mas-
sively Scalable Distributed Systems using the MapRe-
duce Software Framework: the SHARD Triple-Store. In
Programming Support Innovations for Emerging Dis-
tributed Applications, 2010.

RDF in the Clouds: A Survey 25

72. K. Rohloff and R. E. Schantz. Clause-Iteration
with MapReduce to Scalably Query Datagraphs in the
SHARD Graph-Store. In Workshop on Data-intensive
Distributed Computing, 2011.

73. S. Sakr, A. Liu, and A. G. Fayoumi. The Family of
Mapreduce and Large-scale Data Processing Systems.
ACM Comput. Surv., 46(1):11:1–11:44, 2013.

74. M. Saleem, M. R. Kamdar, A. Iqbal, S. Sampath, H. F.
Deus, and A. Ngonga. Fostering Serendipity through
Big Linked Data. In Semantic Web Challenge at ISWC,
2013.

75. A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen.
PigSPARQL: Mapping SPARQL to Pig Latin. In SWIM,
2011.

76. A. Schätzle, M.n Przyjaciel-Zablocki, C. Dorner,
T. Hornung, and G. Lausen. Cascading Map-Side
Joins over HBase for Scalable Join Processing. In
SSWS+HPCSW, 2012.

77. B. Shao, H. Wang, and Y. Li. The Trin-
ity Graph Engine. Technical report, http:
//research.microsoft.com/pubs/
161291/trinity.pdf, 2012.

78. R. Stein and V. Zacharias. RDF On Cloud Number
Nine. In Workshop on New Forms of Reasoning for the
Semantic Web: Scalable and Dynamic, May 2010.

79. The Cancer Genome Atlas project. http://
cancergenome.nih.gov/.

80. H. J. ter Horst. Completeness, decidability and com-
plexity of entailment for RDF Schema and a semantic
extension involving the OWL vocabulary. Web Seman-
tics, 3(2-3):79–115, 2005.

81. Y. Theoharis, V. Christophides, and G. Karvounarakis.
Benchmarking Database Representations of RDF/S
Stores. In ISWC, 2005.

82. S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. In SIGMOD, 2007.

83. J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen,
and H. E. Bal. OWL Reasoning with WebPIE: Calculat-
ing the Closure of 100 Billion Triples. In ESWC, pages
213–227, 2010.

84. J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen.
Scalable Distributed Reasoning using MapReduce. In
ISWC, 2009.

85. J. Urbani, F. van Harmelen, S. Schlobach, and H. Bal.
QueryPIE: Backward Reasoning for OWL Horst over
Very Large Knowledge Bases. In ISWC, 2011.

86. G. Wang and C. Chan. Multi-Query Optimization in
MapReduce Framework. PVLDB, 7(3):145–156, 2013.

87. J. Weaver and J. A. Hendler. Parallel Materialization of
the Finite RDFS Closure for Hundreds of Millions of
Triples. In ISWC, 2009.

88. C. Weiss, P. Karras, and A. Bernstein. Hexastore:
sextuple indexing for semantic web data management.

PVLDB, 1(1):1008–1019, 2008.
89. K. Wilkinson, C. Sayers, H. A. Kuno, and D. Raynolds.

Efficient RDF Storage and Retrieval in Jena2. In SWDB
(in conjunction with VLDB), 2003.

90. B. Wu, H. Jin, and P. Yuan. Scalable SAPRQL Query-
ing Processing on Large RDF Data in Cloud Computing
Environment. In ICPCA/SWS, pages 631–646, 2012.

91. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A
Distributed Graph Engine for Web Scale RDF Data. In
PVLDB, 2013.

92. X. Zhang, L. Chen, Y. Tong, and M. Wang. EAGRE:
Towards Scalable I/O Efficient SPARQL Query Evalu-
ation on the Cloud. In ICDE, 2013.

93. X. Zhang, L. Chen, and M. Wang. Towards Efficient
Join Processing over Large RDF Graph Using MapRe-
duce. In SSDBM, pages 250–259, 2012.

