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ABSTRACT

Kano is the largest city in Northern Nigeria with an estimated population of over 4 million
inhabitants, the city is also an economic hub of Northern Nigeria. The activities within a city
like Kano are known to change landscape structures and local climate activities. Urban forests
are often planned by city planners to mitigate the alteration of microclimate arising from
anthropogenic activities. Accurate and timely information is therefore needed on the
microclimate of cities for the major purpose of improving the quality of life of urban residents.
Remote sensing provides a straightforward and consistent way to determine thermal differences
between distinct microclimate habitats arising from anthropogenic activities. This study used
Satellite Remote Sensing to assess the varying microclimate temperatures occasioned by
anthropogenic activities within the Kano metropolis. Kano City was divided into three strata,
namely densely populated, sparsely populated, and urban forest. Land Surface Temperature was
extracted from the 250 m Moderate Resolution Imagine Spectroradiometer’s (MODIS) satellite
images using JavaScript in the Google Earth Engine Platform. The extracted LST datasets were
from March 2000 to September 2020. The datasets were analysed using Autoregressive
Integrated Moving Average (ARIMA). Results showed that the densely populated areas had
higher temperature ranges of 36.21°C, while the sparsely populated strata and the urban forested
areas had 35.2°C and 34.4°C respectively. The study shows the impact of urban forestry in the
reduction of microclimate heat and climate change mitigations. Monitoring the urban heat island
in three areas of Kano City, an average of 4.88°C difference in temperatures between the urban
forested areas and the densely populated areas of the city can be ascribed to the substitution of
vegetation with buildings and hard surfaces and anthropogenic-induced heat generations.

Keywords: Climate change, Land surface temperature, Microclimate, Satellite remote sensing,
Urban forest.

INTRODUCTION

Climate change fuelled by anthropogenic-induced forces is one of the most dangerous threats
ever faced by humankind. The effects of climate change are converging in ways that threaten to
have unprecedented negative impacts on urban quality of life, and socio-economic stability.
These anthropogenic-induced changes are mainly due to population increase and infrastructural
developments resulting in deforestation, urbanisation, agricultural expansion, etc. Urbanisation
changes the physical energy balance of the environment through anthropogenically induced land
use land cover changes (Tomlinson et al., 2011; Weng, 2012; Deng, 2013). Vegetated and
permeable surfaces are changed into impermeable surfaces like roads buildings and parking lots.
These urban infrastructures are made with steel and concrete, bitumen, and coal tares which have




Assessment of Urban Microclimate of the Semi-Arid City of Kano, Nigeria

higher heat retention capacities and low albedo and are responsible for creating a microclimate
within an urban area (Owen et al., 1998, Xian & Crane, 2006, Hart & Sailor, 2009).

The urban thermal environment varies not only from its rural surroundings but also within the
urban area due to intra-urban differences in land use and surface characteristics (Arthur-Hartranft
et al.,, 2003; Hart & Sailor, 2009). Urbanisation transforms the natural landscape into
anthropogenic urban land and changes surface physical characteristics thereby modifying the air
temperature of the atmosphere (Voogt & Oke, 2003). Different surfaces possess diverse thermal
differences, alter surface energy budgets, and directly affect urban climate; change in urban land
surface temperature can have significant effects on local weather and climate (Bokaie et al., 2016;
Alves & Lopez, 2017). In a simplified analogy, microclimate is simply comparing the
temperature of the kitchen with that of an air-conditioned sitting room. Therefore, urban
microclimate studies can be defined as the geographic delineation of various microclimates
within an urban area determined by the transfers of energy, mass, and momentum at the city
surface (Morgan et al. 1977).

Satellite remote sensing provides a straightforward and consistent way to determine thermal
differences between distinct microclimate habitats arising from anthropogenic activities.
Research studies into the relationship between microclimate and anthropogenic-induced changes
have been widely carried out using Land Surface Temperature (LST). LST is the most
fundamental criterion for establishing a linkage between surface changes and temperature
changes. The availability of arrays of satellite remote sensing datasets has opened vistas of
opportunities for the retrieved LST values from satellite data with various resolutions such as
Landsat TM/ETM+ images 30 m, 120 m to 60 m (Owen et al., 1998, Arthur-Hartranft et al.,
2003, Weng et al., 2004, Weng et al., 2005; Gluch et al., 2006), MODIS data 250 m, 500 m, and
1 km (Singh & Grover, 2014, Alavipanah et al., 2015; Wegmann et al., 2017; Ulpiani, 2020), and
ASTER data (Tomlinson et al., 2011; Singh & Grover. 2014), and NOAA-AVHRR -1.1 km
(Song et al. 2014; Ulpiani, 2020).

Kano is the largest city in Northern Nigeria with a population estimated to be above 4 million.
The city is also an economic hub of Northern Nigeria. The anthropogenic activities within the
city of Kano are changing the landscape structures and microclimate activities of the city. An
important environmental issue that affects all major cities is the urban heat island effect. The
costs and effects of increasing cooling on the ecosystem, as well as local increases in average
yearly temperature, are widely established. The aggregation of urban heat island if unmitigated
are likely to contribute to global warming. Accurate and timely information is therefore needed
on the microclimate of cities to improve the quality of life of the urban residents, reduce the risk
and cost associated with urban heat, and serve as an early warning system for urban developers
and town planners. Such information is readily available with the aid of time series satellite
remote sensing data sets. The study, therefore, used satellite remote sensing to assess the varying
temperatures occasioned by anthropogenic activities within the Kano metropolis.
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THE STUDY AREA

The study area is the metropolitan city of Kano, located in the savannah, south of the Sahelian
region the Latitudes 11°54.55" N - 12°04.09' N and Longitudes 8°26.45" E - 8°32.12" E. Kano
City has for centuries been the most important commercial and industrial nerve center of
Northern (Nabegu, 2010; Abaje et al., 2014). The majority of the city’s annual precipitation,
which averages 690 mm, falls from June through September and the city is mostly very hot
throughout the year, except for the months of December through February which is noticeably
cooler (Nabegu, 2010; Mohammed, et al., 2019). The topography of the study area is an
undulating plain underlain with basement complex rocks of Precambrian age, while the natural
vegetation of the area is classified as Sudan savannah but has been transformed into a derived
savannah region (Nabegu, 2010).

MATERIAL AND METHODS

As shown in Figure 1, the city was divided into three strata based on observed land cover types
from the high-resolution Google Earth Pro; namely sparsely populated (SP), densely populated
(DP), and urban forest (UF). Eight random points were selected for each of the delineated strata
and the Land Surface Temperature (LST) dataset for the stratified areas was extracted from the
Terra Land Surface Temperature and Emissivity 8-Day Global 1km (MOD11A2.006) using
JavaScript on the Google Earth Engine (GEE) platform (Attps.//code.earthengine.google.com/).
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Figure 1: Map showing the delineated microclimates of the study area

The MOD11A2 .006 product provides an average 8-day land surface temperature (LST) in a
1200 x 1200 kilometer grid. Each pixel value in MODI11A2 is a simple average of all the
corresponding MOD11A1 LST pixels collected within those 8 days. A pixel value covers 250-
meter square, thus each of the random eight points is a representative of the 250 m? from the
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delineated strata. The extracted LST datasets were from February 18, 2000, to August 28, 2020.
The datasets were analysed using Autoregressive Integrated Moving Average (ARIMA). A
cross-correlation coefficient was performed to measure the positive or negative strength among
the six locations using Equation 1 below.

(1, 2= [ 1 2] (D

Let and by two-time series variables of interest, where is a time index, , and
, ,such that # . Assuming each time series has means () and () respectively and
variances 2 ( ) and 2 () respectively at time for each , then the cross-correlation between

the times ; and , is defined as the expected value of both time series at the respective times 1
and 5. The Auto-regressive Moving Average (ARMA) was used to model the time series
variables and predict future points in the variables. ARMA model forecasts variables that are
time series by linearly combining their historic values (Dimri et al., 2020). ARMA model as a
tool deals with all the aspects related to univariate time series model identification and its
parameter estimation and forecasting ARMA model has the dual advantages of flexibility of use
for modeling and its application to non-stationary time series data sets.

It is made up of the autoregressive part which is used to forecast time series variables by
regressing it on a combination of its past values (Shumway & Stoffer 2017), and the integrated
part which indicates the stationary of the time series data by subtracting the observations from
the previous values (Lewis, et al. 2009), and the moving average part which uses the
combination of errors in the past values to forecast future values (Becker. ef al. 2004). Let ()
be the time series data of interest indexed by some set , such that:

{ O): } )

and . The ARIMA ( , , ) model — where is the order of the autoregressive part of the
model (Shumway & Stoffer, 2017), is the degree of differencing, and is the order of the
moving average part of the model — for the time series is given by:

( = -+ 1 4 ) .o+ (o= )= o+ g g+ +
e .(3)
Which is equal to:
(= o )A= ) = (1= | ) (4)
Where , , ,and represent the independently and identically distributed error terms of the

model, the coefficients of the autoregressive part of the model, the coefficients of the moving
average part of the model, and the lag operator respectively. When the time series is stationary,
equation (3) becomes:

- 1 -1 - = + 1 _1+...+ PPN (5)
Which is equal to:

=, (I ) o (6)
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Where o =1, and is a constant term. Equation (Mitchard, ef al.) is known as the ARMA
model. For each location, the derived LST time series observations were divided into a 70/30
ratio for training and validation.

Mean Absolute Percentage Error (MAPE)

is the time series data of interest, where 1is indexed from {1,2,... }, and
and are subsets of such that ( : ) , then is such that =
{1,2,..., } and is such that ={( +1),( +2),..., }. Also, let be the
forecasted values of  indexed from{( +1),( + 2),..., }. The mean absolute percentage

error (MAPE) is used to measure the accuracy of the forecasting method (De Myttenaere et al.,
2015) and is expressed as:

1

(- 1

Here, the absolute value in this calculation is summed for every forecasted point in time and
divided by the number of fitted points n, multiplied by 100% making it a percentage error (De
Mpyttenaere et al., 2015).

RESULTS AND DISCUSSION

Land Surface Temperature (LST) of Urban Densely Populated (UDP) areas was generally higher
(35.74°C and 34.12°C) than LST from other locations, while the mean LST for the two sparsely
populated areas was 31.84°C and 32.11°C respectively (Table 1). LST from urban forests (UF)
was significantly lower at 28.5 and 31.6 degrees respectively. The forecast means for each of the
locations using the ARIMA model with the MAPE test as shown in Tables 1 and 2 below is on
the increase for the Densely Populated and the Sparsely Populated (SP1&2) temperatures, while
the urban forest areas remain stable for both the dry and wet season.

Table 1: Mean temperature, the forecast means, and the accuracy-test results for each of
the microclimate locations for the wet seasons

Locations Mean Forecast Mean Mape Training Mape Test
UDP 1 35.74 36.74 542 4.42
UDP 2 34.12 35.01 4.96 4.06

SP1 31.85 32.73 4.10 4.29
SP 2 32.12 33.05 3.68 4.06
UF1 28.50 28. 64 3.53 4.37
UF 2 31.68 31.62 3.75 4.14
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Table 2: Mean temperature, the forecast means, and the accuracy-test results for each of
the microclimate locations for the wet seasons

Locations Mean Forecast Mean Mape Training Mape Test
UDP 1 37.16 37.98 2.10 2.99
UDP 2 35.10 36.14 2.03 3.02

SP 1 29.06 30.18 3.09 3.75
SP 2 31.26 32.35 2.10 2.64
UF1 26.95 27.0 2.75 3.45
UF 2 30.45 30.50 2.16 3.31

Observed mean temperature differences for the dry and wet seasons between the densely and
sparsely populated, and the urban forests were significantly different (Tables 1 and 2). The lower
mean temperature was observed within the urban forest areas, followed by the sparsely populated
areas. While high mean temperatures were observed within the densely populated areas of the
city. The graphs in Figure 2 and Figure 3 show average high-temperature ranges for the
delineated areas of Urban Densely populated (UDP) within the dry and wet seasons.
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Figure 2: Dry season graph of Urban Densely Populated (UDP), Urban Sparsely Populated,
and Urban Forest (UF)
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Figure 3: Dry season graph of Urban Densely Populated (UDP), Urban Sparsely Populated
urban forest (UF)

Urban expansion in the form of housing and road construction is a direct impact of population
increase and population increases, and the associated anthropogenic impacts have been on the
rise within and around the city of Kano through urbanization. Urban expansion implies that
paved roads and concrete buildings absorb and radiate more heat than vegetated areas (Singh and
Grover, 2014).

Alteration of land surfaces occurs as a direct environmental effect of urbanisation. The
implication of land modifications due to urbanisation is the development of impervious surfaces
which makes up a sizable portion of the various developed lands (such as business, industrial,
transportation, and residential lands). The physical characteristics of ground surfaces, such as
soil moisture, material heat capacity, conductivity, albedo, and emissivity, among others, are
altered as a result of this conversion, which lowers evapotranspiration (Shoshany et al., 1994;
Friedl et al., 2002; Chudnovsky et al., 2004). The change in urban LST and atmospheric
temperature, which has a significant impact on urban internal microclimatology, surface energy
change, anthropogenic heat discharge, building energy consumption, atmospheric pollution, and
human thermal comfort, is, therefore, one of the most significant environmental impacts (Deng
& Wu, 2013).

Urban microclimates are known to respond to local land-cover composition and Land cover
influences spatial distributions of LST. Vegetation covers are effective mechanisms of cooling as
Urban vegetation is known to reduce heat islands through shading and evapotranspiration.
Shading provided by Urban vegetation reduces the penetration of sunlight and reduces the
energy storage in the soil and well-vegetated areas show lower air temperatures. Therefore,
urban forest acts as heat absorbent by reducing air temperature by transpiration.
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Continuous substitution of vegetation and green areas with artificial, impervious surfaces is one
of the main humanly controlled factors that contribute to higher ambient urban air temperature
(Tsoka et al., 2020). Monitoring the urban heat island in three areas of Kano City, an average of
5 OC difference in temperatures between the vegetated areas, ascribable to the substitution of
vegetation with buildings and hard surfaces. In a similar study, Susca et al. (2011) observed a
temperature difference of + 2 degrees centigrade between vegetated areas in New York City and
other vegetated areas of the city. Also, previous studies have observed a positive relationship
exists between LST and land cover types. Green Space or urban forest cover has heterogeneous
patterns in air and land surface temperature that lead to cool refugia and warming hot spots
within cities (Imhoff et al., 2010; Coseo & Larsen, 2014; Jenerette et al., 2016).

The planned areas of the city which are also the areas with urban forestry are usually reserved for
inhabitants with high socio-economic status, while the densely populated and non-vegetated
areas are places with low income/ socioeconomic status. For instance, a study by Huang and
Cadenasso (2016) found a significant relationship between the urban heat island and
socioeconomic factors. Higher Urban Heat Island (UHI) effects were linked to groups
characterized by low income, high poverty, and less education. The inhabitants living within the
Urban Densely Populated (UDP1 and UDP2) areas of the city are likely to be predisposed to
infectious diseases. Life cycles of pathogens are influenced by the change in landscape or change
in land use land cover and climate change indices such as rise in temperature (Wu et al., 2016;
Tidman et al., 2021). Socio-economic status and population distribution also influence the spread
of infectious diseases in humid tropics (Wilson, 2016; El-Sayed & Kamel, 2020).

Kano is a mega city and like most other African cities, socioeconomic status determines the
habitation and living conditions of her inhabitants. One of the negative environmental and social
consequences of urban heat is the spread of tropical communicable diseases such as diphtheria,
Polio, and Meningitis. The incidence and spread of these diseases are often linked to rising
temperatures (Bai et al., 2017). Research on the effect of meteorological factors on the incidence
of Meningococcal meningitis observed that temperature increase was positively correlated with
the incidence and spread of the disease. Akanwake et al. (2022) also noted that cerebral
meningitis is a climate-sensitive disease, and its emergence and spread are associated with
temperature rise.

CONCLUSION

Characterizing how urban forests and built-up land cover influence the microclimate of growing
cities and their interrelationships with satellite remote sensing is an important research challenge
in the 21% century. This study has clearly shown the influence of urban forests in regulating and
mitigating temperature within Kano City. Remote sensing studies have shown that urban areas
have unique environmental, climatic, and land use/cover characteristics as a result of intense
anthropogenic activities. Consequently, urban areas have developed distinct microclimates and
elevated temperatures and these microclimate components can have long-term impact on human
health (Tsoka et al., 2020).

To mitigate the alteration of microclimate arising from anthropogenic activities, urban forests or
green spaces are often planned with the city's landscapes. The major goal of climate adaptation
efforts has been to cool cities and reduce UHI effects. Urban design and planning in warm,
humid climates must take into account offering shade and ventilation in outdoor urban areas.
Such steps can improve human comfort, protect human health, and reduce energy use.
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Understanding the relationships between landscape compositions and LST is important for
mitigating the urban heat island effect (Song et al., 2014). Therefore, mitigation of the UHI
effects via the configuration of green spaces and sustainable design of urban environments has
become an issue of increasing concern under changing climate. Accurate and timely information
is therefore needed on the microclimate of cities to improve the quality of life of urban residents.
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